微积分和线性代数和物理有关吗

 我来答
朝阳五行雷
2022-12-04 · TA获得超过201个赞
知道小有建树答主
回答量:5563
采纳率:94%
帮助的人:104万
展开全部
对物理有帮助。

微积分与线性代数有关系吗?

1、微积分和线性代数有关系

2、矩阵显然是不能替代微分算子的。微分是解析运算,是一种极限意义下的运算,而线性代数只是线性的运算,不具有极限意义。

接下来扯几句它们的联系在何处:

1、微分、坐标变换与线性变换
对于任意空间到另一个空间的坐标变换:

这里直接对 x,y 求全微分,可以得到:

这里就出现了一个十分有趣的现象:对于坐标变换 x,y 到 u,v,它们是任意变换(当然g,h必须可微),然而从dx,dy到du,dv却成了一个线性变换的形式:

这里我们记雅可比矩阵为:

如果它可逆,则其逆矩阵刚好是:

此时如果在x,y平面上做一个矩形,它的长宽分别为 dx,dy, 那么在上述变换下,其对应在u,v平面上的平行四边形面积就可以算出来了。这里详细内容我在另一个回答已经说明了,可以参考:

为什么二重积分极坐标变换多一个r?
在你们的非专业教程里面,线代通常是作为计算工具存在的,尤其是矩阵更是为简化记法起到了巨大的作用:

2、多元函数的隐函数
对隐函数组:

两边对x求偏导得:

整理成线性方程组的矩阵形式:

注意到其系数矩阵又是一个雅可比矩阵,该线性方程组用克莱默法则一步到位。

3、多元函数的Taylor公式
看着是不是很眼熟?一次项变成了x-a向量与f的梯度的点积,2次项刚好变成了2次型,而此处的H(x)则刚好是Hessian矩阵:

4、向量求导
如果引入向量(矩阵)求导,那么上述许多内容还可以进一步统一,因为雅可比矩阵实际上就是一个向量对另一个向量的导数:

仔细看看上面,如果我们令黑体y = (u,v),黑体x = (x,y),那么就刚好是上面所说的雅可比矩阵了。

这部分的详细内容我在这里有详细描述:

如何理解矩阵对矩阵求导?
当然矩阵求导这个话题还可以进一步延伸,但可惜的是只要有矩阵参与,就必须再引入Kronecker乘积了,否则通常不具有链式法则。这部分内容可以参考文献:Kronecker Products and Matrix Calculus in System Theory。
PS:尤其在多元函数部分,矩阵和线性代数的用处极大。如果能熟练掌握线代的运算技巧,再结合几何意义,你的多元函数积分可以飞起来玩。
jj19707070
2022-12-04 · TA获得超过202个赞
知道小有建树答主
回答量:6772
采纳率:92%
帮助的人:149万
展开全部
现代物理专业用到的数学,几乎都和微积分与线性代数有关。 求导、积分是函数空间上的线性运算。 例如物理中的加速度,就是速度的微分,物理中的力学,热能,原子学中的方程式也大多是微积分和线性代数式子,所以微积分和线性代数和物理有关系的。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式