sin(-7/12*π)接下来该怎么算它的值
1个回答
展开全部
解法一:
sin (-- 7π/12)
= --sin ( 7π/12)
= -- cos(π/2 -- 7π/12 )
= -- cos(-- π/12)
= -- cos(π/12)
= -- (√6 + √2) / 4.
本题一个依据是 sina = cos(π/2 -- a)
比如:sin 30° = cos60°
即:互余的两个角,一个角的正弦 = 另一个角的余弦.
本题另一个依据是:sin(-- a)= -- sina
cos(-- a)= cosa
cos(π/12)= cos15° = (√6 + √2) / 4.
解法二:依据①:sin(-- a)= -- sina
依据②:sin (x + y)= sin x cosy + cosx siny
sin (-- 7π/12)
= --sin ( 7π/12)
= -- sin(π/4 + π/3)
= -- [ sin(π/4)× cos(π/3) + cos(π/4)× sin(π/3)]
= -- ( √2/2 × 1/2 + √2/2 × √3/2 )
= -- ( √2/4 + √6/4 )
= -- ( √2 + √6 ) / 4
sin (-- 7π/12)
= --sin ( 7π/12)
= -- cos(π/2 -- 7π/12 )
= -- cos(-- π/12)
= -- cos(π/12)
= -- (√6 + √2) / 4.
本题一个依据是 sina = cos(π/2 -- a)
比如:sin 30° = cos60°
即:互余的两个角,一个角的正弦 = 另一个角的余弦.
本题另一个依据是:sin(-- a)= -- sina
cos(-- a)= cosa
cos(π/12)= cos15° = (√6 + √2) / 4.
解法二:依据①:sin(-- a)= -- sina
依据②:sin (x + y)= sin x cosy + cosx siny
sin (-- 7π/12)
= --sin ( 7π/12)
= -- sin(π/4 + π/3)
= -- [ sin(π/4)× cos(π/3) + cos(π/4)× sin(π/3)]
= -- ( √2/2 × 1/2 + √2/2 × √3/2 )
= -- ( √2/4 + √6/4 )
= -- ( √2 + √6 ) / 4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询