怎样判断单调区间?

 我来答
学法律的小邵
高粉答主

2022-12-23 · 关注我不会让你失望
知道小有建树答主
回答量:793
采纳率:100%
帮助的人:23.5万
展开全部

首先要记住

f(x)=sinx的单调增区间是x∈[2kπ-π/2,2kπ+π/2],单调减区间是x∈[2kπ+π/2,2kπ+3π/2],k∈Z

f(x)=cosx的单调增区间是x∈[2kπ-π,2kπ],单调减区间是x∈[2kπ,2kπ+π],k∈Z

遇到复合函数时,把ωx+φ看作一个整体,以余弦函数为例,函数简化为f(x)=Asinα

由于单调区间和A没有关系,所以单调增区间为α∈[2kπ-π,2kπ],k∈Z

这时把α=ωx+φ带回,有ωx+φ∈[2kπ-π,2kπ],k∈Z

解得单调增区间为x∈[(2kπ-π-φ)/ω,(2kπ-φ)/ω],k∈Z

举个例子:求f(x)=5sin(2x+π/4)的单调增区间

f(x)的单调增区间为2x+π/4∈[2kπ-π/2,2kπ+π/2],k∈Z

则2x∈[2kπ-3π/4,2kπ+π/4],k∈Z

即x∈[kπ-3π/8,kπ+π/8],k∈Z

扩展资料:

单调区间是指函数在某一区间内的函数值y,随自变量x的值增大而增大(或减小)恒成立。若函数y=f(x)在某个区间是增函数或减函数,则就说函数在这一区间具有(严格的)单调性,这一区间叫做函数的单调区间。此时也说函数是这一区间上的单调函数。

若函数y=f(x)在某个区间是增函数或减函数,则就说函数在这一区间具有(严格的)单调性,这一区间叫做函数的单调区间。此时也说函数是这一区间上的单调函数。

注:在单调性中有如下性质。图例:↑(增函数)↓(减函数)

↑+↑=↑ 两个增函数之和仍为增函数

↑-↓=↑ 增函数减去减函数为增函数

↓+↓=↓ 两个减函数之和仍为减函数

↓-↑=↓ 减函数减去增函数为减函数

一般地,设函数f(x)的定义域为I:

如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1<x2时都有f(x1)<f(x2)。那么就说f(x)在这个区间上是增函数。

相反地,如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1<x2时都有f(x1)>f(x2),那么f(x)在这个区间上是减函数。

参考资料:百度百科-单调区间

甚好91
2023-01-20
知道答主
回答量:6
采纳率:0%
帮助的人:1513
展开全部
你好关于你的问题,函数单调性判断方法:
1、图象观察法
在单调区间上,增函数的图象是上升的,减函数的图象是下降的。因此,在某一区间内,一直上升的函数图象对应的函数在该区间单调递增;
一直下降的函数图象对应的函数在该区间单调递减;
注意:对于分段函数,要特别注意。例如,上图左可以说是一个增函数;上图右就不能说是在定义域上的一个增函数(在定义域上不具有单调性)。
2、定义法
根据函数单调性的定义,在这里只阐述用定义证明的几个步骤:
①在区间D上,任取x1,x2,令x1<x2;
②作差f(x1)-f(x2);
③对f(x1)-f(x2)的结果进行变形处理(通常是配方、因式分解、有理化、通分,利用公式等等);
④确定符号f(x1)-f(x2)的正负;
⑤下结论,根据“同增异减”原则,指出函数在区间上的单调性。
3、等价定义法
设函数f(x)的定义域为D,在定义域内任取x1,x2,且x1≠x2,若[f(x1)-f(x2)]/(x1-x2)>0,则函数单调递增;若有<0,则函数单调递减(证明从略),以上是函数单调性的第二定义。
4、求导法
导数与函数单调性密切相关。它是研究函数的另一种方法,为其开辟了许多新途径。特别是对于具体函数,利用导数求解函数单调性,思路清晰,步骤明确,既快捷又易于掌握,利用导数求解函数单调性,要求熟练掌握基本求导公式。
如果函数y=f(x)在区间D内可导(可微),若x∈D时恒有f'(x)>0,则函数y=f(x)在区间D内单调增加;反之,若x∈D时,f'(x)<0,则称函数y=f(x)在区间D内单调减少。
5、复合函数法
在函数y=f[g(x)]的定义域内,令u=g(x),则y=f[g(x)]的单调性由u=g(x)与y=f(x)的单调性共同确定。复合函数的单调性可用“同增异减”来判定,但要考虑某些特殊函数的定义域。
注:y=f(x)+g(x)不属于复合函数,因此不在此方法的适用范围内
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式