下面什么不属于神经网络法的数据挖掘点缺点
展开全部
以下哪些不是神经网络的缺点
投稿: 陈娇丽 2022-06-23 19024 ℃
1.优点:
(1)具有自学习功能。例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就会通过自学习功能,慢慢学会识别类似的图像。自学习功能对于预测有特别重要的意义。预期未来的人工神经网络计算机将为人类提供经济预测、市场预测、效益预测,其应用前途是很远大的。
(2)具有联想存储功能。用人工神经网络的反馈网络就可以实现这种联想。
(3)具有高速寻找优化解的能力。寻找一个复杂问题的优化解,往往需要很大的计算量,利用一个针对某问题而设计的反馈型人工神经网络,发挥计算机的高速运算能力,可能很快找到优化解。
2.缺点:
(1)最严重的问题是没能力来解释自己的推理过程和推理依据。
(2)不能向用户提出必要的询问,而且当数据不充分的时候,神经网络就无法进行工作。
(3)把一切问题的特征都变为数字,把一切推理都变为数值计算,其结果势必是丢失信息。
(4)理论和学习算法还有待于进一步完善和提高。
投稿: 陈娇丽 2022-06-23 19024 ℃
1.优点:
(1)具有自学习功能。例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就会通过自学习功能,慢慢学会识别类似的图像。自学习功能对于预测有特别重要的意义。预期未来的人工神经网络计算机将为人类提供经济预测、市场预测、效益预测,其应用前途是很远大的。
(2)具有联想存储功能。用人工神经网络的反馈网络就可以实现这种联想。
(3)具有高速寻找优化解的能力。寻找一个复杂问题的优化解,往往需要很大的计算量,利用一个针对某问题而设计的反馈型人工神经网络,发挥计算机的高速运算能力,可能很快找到优化解。
2.缺点:
(1)最严重的问题是没能力来解释自己的推理过程和推理依据。
(2)不能向用户提出必要的询问,而且当数据不充分的时候,神经网络就无法进行工作。
(3)把一切问题的特征都变为数字,把一切推理都变为数值计算,其结果势必是丢失信息。
(4)理论和学习算法还有待于进一步完善和提高。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询