已知扇形的圆心角为90°,弧长为2L,求扇形的内切圆面积

 我来答
游戏解说17
2022-08-13 · TA获得超过951个赞
知道小有建树答主
回答量:313
采纳率:0%
帮助的人:63.9万
展开全部
设在扇形AOB中
AO、BO、弧度和圆的切点为E,F,G
连接内切圆心C和E,F,连接OG
则,CE垂直于AO,CF垂直于BO
在直角三角形OFC中,角FOC=FCO=45度
扇形半径R=2L/π
在三角形OCF中,OC=根2*CF
2L/π-r=根2*r
r=2L/[π(根2+1)]
内切圆面积=π*r^2=4L^2/[π(3+2根2)]
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式