在△ABC中,C-A=π/2,sinB=1/3 (1)求sinA的值 (2)设AC=根号6,求△ABC的面积
2个回答
展开全部
C-A=π/2
所以,C=A+π/2,
所以sinC=cosA,cosC=-sinA,
sinB=sin(A+C)=sinAcosC+cosAsinC
=-sin^A+cos^A
=1-2sin^A=1/3,
1/3=sin^A,sinA>0,
所以sinA=√3/3.
(2)AC=√6,由正弦定理,
BC=AC*sinA/sinB=3√2,
sinC=cosA=√6/3,
△ABC的面积=(1/2)BC*AC*sinC
=(1/2)*3√2*√6*√6/3
=3√2.
所以,C=A+π/2,
所以sinC=cosA,cosC=-sinA,
sinB=sin(A+C)=sinAcosC+cosAsinC
=-sin^A+cos^A
=1-2sin^A=1/3,
1/3=sin^A,sinA>0,
所以sinA=√3/3.
(2)AC=√6,由正弦定理,
BC=AC*sinA/sinB=3√2,
sinC=cosA=√6/3,
△ABC的面积=(1/2)BC*AC*sinC
=(1/2)*3√2*√6*√6/3
=3√2.
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
sinA=sin(B+C) = sin(pi/2+B+A) = cos(B+A)
sinA = cosB cosA -sinAsinB = cosA sqrt(8)/3 - sinA/3
sinA /cos A = sqrt(8)/4
sinA = 1/sqrt(3)
b = sqrt(6)
sinB/b = sinA/a
a = b sinA/sinB = sqrt(6)/sqrt(3) * 3 = 3sqrt(2)
sinC = sin(pi/2+A) = cosA = sqrt(6)/3
面积=1/2absinC = 3sqrt(12)*sqrt(6)/6 = 3sqrt(2)
sinA = cosB cosA -sinAsinB = cosA sqrt(8)/3 - sinA/3
sinA /cos A = sqrt(8)/4
sinA = 1/sqrt(3)
b = sqrt(6)
sinB/b = sinA/a
a = b sinA/sinB = sqrt(6)/sqrt(3) * 3 = 3sqrt(2)
sinC = sin(pi/2+A) = cosA = sqrt(6)/3
面积=1/2absinC = 3sqrt(12)*sqrt(6)/6 = 3sqrt(2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询