正态分布的数据怎么看?
1、所谓的正态分布表都是标准正态分布表(n(0,1),通过查找实数x的位置,从而得到p(z<=x)。
2、表的纵向代表x的整数部分和小数点后第一位,横向代表x的小数点后第二位,然后就找到了x的位置。比如这个例子,纵向找2.0,横向找0,就找到了2.00的位置,查出0.9772。
扩展资料:
密度函数关于平均值对称
平均值与它的众数(statistical mode)以及中位数(median)同一数值。
函数曲线下68.268949%的面积在平均数左右的一个标准差范围内。
95.449974%的面积在平均数左右两个标准差的范围内。
99.730020%的面积在平均数左右三个标准差的范围内。
99.993666%的面积在平均数左右四个标准差的范围内。
函数曲线的反曲点(inflection point)为离平均数一个标准差距离的位置。
深蓝色区域是距平均值小于一个标准差之内的数值范围。在正态分布中,此范围所占比率为全部数值之68%,根据正态分布,两个标准差之内的比率合起来为95%;三个标准差之内的比率合起来为99%。
在实际应用上,常考虑一组数据具有近似于正态分布的概率分布。若其假设正确,则约68.3%数值分布在距离平均值有1个标准差之内的范围,约95.4%数值分布在距离平均值有2个标准差之内的范围,以及约99.7%数值分布在距离平均值有3个标准差之内的范围。称为“68-95-99.7法则”或“经验法则” 。
扩展资料:百度百科-标准正态分布