高等数学矩阵的初等行变换是什么规则,请详细举例说明

 我来答
惠企百科
2022-12-22 · 百度认证:北京惠企网络技术有限公司官方账号
惠企百科
惠企百科网是一家科普类综合网站,关注热门中文知识,集聚互联网精华中文知识,本着自由开放、分享价值的基本原则,向广大网友提供专业的中文知识平台。
向TA提问
展开全部

对矩阵作如下变换:
1、位置变换:把矩阵第i行与第j行交换位置,记作:r(i)<-->r(j);
2、倍法变换:把矩阵第i行的各元素同乘以一个不等于0的数k,记作:k*r(i);
3、消法变换:把矩阵第j行各元素同乘以数k,加到第i行的对应元素上去,记作:r(i)+k*r(j),这条需要特别注意,变的是第i行元素,第j行元素没有变;
对矩阵作上述三种变换,称为矩阵的行初等变换。
把上面的“行”换成“列”,就称为矩阵的列初等变换,列初等变换分别用记号c(i)<-->c(j);k*c(i);c(i)+k*c(j)表示。
行初等变换、列初等变换统称矩阵的初等变换。

扩展资料:

矩阵变换应用——分块矩阵

矩阵的分块是处理阶数较高矩阵时常用的方法,用一些贯穿于矩阵的纵线和横线将矩阵分成若干子块,使得阶数较高的矩阵化为阶数较低的分块矩阵,在运算中,我们有时把这些子块当作数一样来处理,从而简化了表示,便于计算。 分块矩阵有相应的加法、乘法、数乘、转置等运算的定义,也可进行初等变换。 分块矩阵的初等变换是线性代数中重要而基本的运算,它在研究矩阵的行列式、特征值、秩等各种性质及求矩阵的逆、解线性代数方程组中有着广泛的应用 。

参考链接:

矩阵变换-百度百科

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式