怎样证明一个函数在一个区间内可导?
2022-12-22 · 百度认证:北京惠企网络技术有限公司官方账号
关注
展开全部
1、首先证明函数在区间内是连续的。
2、用函数求导公式对函数求导,并判断导函数在区间是否有意义。
3、用定义法对端点和分段点分别求导,并且分要证明分段点的左右导数均存在且相等。
证明一个函数在一个区间内可导即证明在定义域中每一点导数存在。函数在某点可导的充要条件:左导数和右导数都存在并且相等。
扩展资料:
导数与函数的性质:
1、若导数大于零,则单调递增;若导数小于零,则单调递减;导数等于零为函数驻点,不一定为极值点。需代入驻点左右两边的数值求导数正负判断单调性。
2、若已知函数为递增函数,则导数大于等于零;若已知函数为递减函数,则导数小于等于零。
3、可导函数的凹凸性与其导数的单调性有关。如果函数的导函数在某个区间上单调递增,那么这个区间上函数是向下凹的,反之则是向上凸的。
4、如果二阶导函数存在,也可以用它的正负性判断,如果在某个区间上恒大于零,则这个区间上函数是向下凹的,反之这个区间上函数是向上凸的。曲线的凹凸分界点称为曲线的拐点。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询