一个自然数恰好有18个约数,那么它最多有______个约数的个位是3.
1个回答
展开全部
根据因数个数的公式反推,情况一:
18=2×3×3=(1+1)×(2+1)×(2+1),这个自然数可能是M×N 2 ×K 2 的形式;
则使其个位含3的因数最多的可能是:M是个位为3的质数、N是个位为1的质数、K是个位为1的质数,
则个位含3的因数个数有:(2+1)×(2+1)=9个;
情况二:18=3×6=(2+1)×(5+1)
这个自然数可能是MM 2 ×N 5 的形式;
则使其个位含3的因数最多的可能是:M是个位为3的质数、N是个位为1的质数,则个位含3的因数个数有5+1=6个;粗略考虑其他情况如:7的3次方尾数为3等,均使得M、N可用的幂次数大大下降,则个位含3的因数个数无法超过2×4、3×3的情况,即不会比9多.
综上,一个自然数恰好有18个因数,最多有9个因数个位是3.
故答案为:9.
18=2×3×3=(1+1)×(2+1)×(2+1),这个自然数可能是M×N 2 ×K 2 的形式;
则使其个位含3的因数最多的可能是:M是个位为3的质数、N是个位为1的质数、K是个位为1的质数,
则个位含3的因数个数有:(2+1)×(2+1)=9个;
情况二:18=3×6=(2+1)×(5+1)
这个自然数可能是MM 2 ×N 5 的形式;
则使其个位含3的因数最多的可能是:M是个位为3的质数、N是个位为1的质数,则个位含3的因数个数有5+1=6个;粗略考虑其他情况如:7的3次方尾数为3等,均使得M、N可用的幂次数大大下降,则个位含3的因数个数无法超过2×4、3×3的情况,即不会比9多.
综上,一个自然数恰好有18个因数,最多有9个因数个位是3.
故答案为:9.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询