速算技巧
速算技巧 篇1
1、巧妙运用首同末合十
利用首同末合十的方法来训练。首同末合十法是两个两位数,它们的十位数相同,而个位数相加的和是10。利用首同末合十的两个两位数相乘,积的右边的两位数正好是个位数的乘积,积的左面的数正好是十位上的数乘以比它大1的积,合并起来就是它们的乘积。例如,54×56=3024,81×89=7209。
2、充分利用五大定律
教师要扎实开展好现行教材四年级数学下册中计算的五大运算定律的教学(加法交换律、加法结合律、乘法交换律、乘法结合律、乘法分配律),引导学生弄清来龙去脉,不让一个学生掉队,训练每个学生能自觉运用简便办法,能针对不一样题型灵活选择简便方法正确而快捷地进行计算。
3、数字颠倒的两、三位数减法巧算
形如73与37、185与581等的数称为数字颠倒的两、三位数,巧算方法为:
1、数字颠倒的两位数减法,可用两位数字中的大数减去小数,再乘以9,积就是它们的差。如73-37=(7-3)×9=36,82-28=(8-2)×9=54。
2、数字颠倒的三位数减法,可用三位数中最大数减去最小数,再乘以9,乘积分两边,中间填上9,就是它们的差。比如,581-158=(8-1)×9=63,所以851-158=693。
4、利用分数与除法的关系来巧算
在一个仅有二级运算的题里,按顺序计算需要多步计算,利用乘除法的关系进行计算就会简便。比如,
24÷18×36÷12=(24÷18)×(36÷12)=2418×3612=4。
5、利用扩大缩小的规律进行简算
有些除法计算题直接计算比较繁琐,并且容易算错,利用扩缩规律进行合理的变形能够找到简便的解决方法。比如,
7÷25=(7×4)÷(25×4)=28÷100=0。28,
24÷125=(24×8)÷(125×8)=192÷1000=0.192。
6、留心左右两数合并法
任意的两位数乘上99或任意的三位数乘上999的速算法叫做左右两数合并法。
1、任意两位数乘上99的巧算方法是,将这个任意的两位数减去1,作为积的左面的两位数字,再将100减去这个任意两位数的差作为积的右边两位数,合并起来就是它们的积。例如,62×99=6138,48×99=4752。
2、任意三位数乘上999的巧算方法,就是将这个任意的三位数减去1,作为积的左面的三位数字,再将1000减去这个任意三位数的差作为积的右边的三位数字,合并起来就是它们的积。例如,781×999=780219,396×999=395604。
7、用添零加半的方法巧算
一个数乘上15的速算方法叫做添零加半。比如,26×15将26后面添0得260,再加上260的一半130,即260+130=390,所以26×15=360。
8、利用拆和法进行巧算
有些计算题,乍看起来都与运算定律没有关系,但经过变形后,直接地应用运算定律来进行计算。
9、用两边拉中间加的方法速算
任何数同11相乘,只要把原数的个位移到积的个位的位置,最高位移到积的最高位的位置,中间的数分别是个位上的数加十位上的数的和就是十位,十位上的数加百位上的和就是百位如果相加的数的和满十要向前一位数进1。比如,124×11=1364,568×11=6248。
10、用十加个减法速算
十加个减法就是任何两位数加上9的和,能够把这个两位数变成十位加1个位减1的数,即36+9=45,17+9=26。这种计算技巧适合低年级的小学生。
很多学生计算结果不正确是由于马虎、粗心等不良习惯造成的。培养学生良好计算习惯时,教师要讲究训练形式,激发学生计算兴趣,寓教于乐,采用多样化形式训练。如用游戏、竞赛、卡片、小黑板视算、听算、限时口算、自编计算题、小故事等多种形式训练,教师要有耐心,有恒心,要统一办法与要求,要坚持不懈,抓到底。教师要引导学生养成良好的审题习惯、书写习惯和检验习惯。
速算技巧 篇2
1、头同尾和十
例如:43x47,即是两个因数的第一个数字都是4,第二个是3+7=10,故称头同尾和十。
这种速算技巧是头x(头+1)写前面,尾x尾写后面。
2、尾同头和十
例如:27x87,即是两个因数的第一个数字是2+8=10,第二个都是7,故称尾同头和十。
这种速算技巧是头x头+尾写前面,尾x尾写后面。
3、偶数x5
速算技巧:偶数÷2后添0得结果。
例如:28x5,能够这么算28÷2=14,14后面添个0得到140,即是28x5=140。
又如:466x5,能够这么算466÷2=233,233后面添个0得到2330,即是466x5=2330。
4、偶数x15
速算技巧:偶数+偶数的一半后添0
例如:28x15,能够这么算28+28÷2=42,42后面添个0得到420,即是28x15=420。
又如:466x15,能够这么算466+466÷2=699,699后面添个0得到6990,即是466x15=6990。
5、多位数x11
速算技巧:头尾相同,中间相加
例如:234x11,运算方法是2(2+3)(3+4)4,结果即是234x11=2574
又如:724x11,运算方法是7(7+2)(2+4)4,结果即是724x11=7964
可是,如果中间相加的数大于或等于10时,前面一个数就得加1。
比如:756X11,即7+5=12、5+6=11了,那运算结果不是712116,而是8316,你会了吗?
广告 您可能关注的内容 |