已知抛物线y²=2px p>0 的焦点弦AB的两端点坐标分别为A (x1 ,y1) B(x2 ,y2)
展开全部
【解法一】
当AB垂直于x轴时,方程为x=p/2,代入y^2=2px可得y^2=p^2,得
y1=-p,y2=p,x1=x2=p/2,计算可得(y1y2)/(x1x2)=-4.
当AB不垂直与x轴时,设方程为y=k(x-p/2),由y^2=2px得x=y^2/2p代入直线方程化简得ky^2-2py-kp^2=0,所以y1y2=(kp^2)/k=-p^2
x1x2=(y1^2/2p)*(y2^2/2p)=(y1y2)^4/(4p^2)=p^2/4,
所以(y1y2)/(x1x2)=-4.
【解法二】
弦AB斜率
k=(y1-y2)/(x1-x2)
=(y1-y2)/[(y1^2/2p)-(y2^2/2p)]
=2p/(y1+y2) (1)
而A、F、B三点共线,故
k=(y1-0)/(x1-p/2) (2)
由(1)、(2)得
y1/(x1-p/2)=2p/(y1+y2)
--->y1y2+y1^2=2px1-p^2
而y1^2=2px1
故y1y2=-p^2 (3)
又x1x2=(y1^2/2p)×(y2^2/2p)
=(y1y2)^2/(4p^2)
=(-p^2)^2/(4p^2)
故x1x2=p^2/4 (4)
因此,由(4)÷(3)得
(y1y2)/(x1x2)=-4.
当AB垂直于x轴时,方程为x=p/2,代入y^2=2px可得y^2=p^2,得
y1=-p,y2=p,x1=x2=p/2,计算可得(y1y2)/(x1x2)=-4.
当AB不垂直与x轴时,设方程为y=k(x-p/2),由y^2=2px得x=y^2/2p代入直线方程化简得ky^2-2py-kp^2=0,所以y1y2=(kp^2)/k=-p^2
x1x2=(y1^2/2p)*(y2^2/2p)=(y1y2)^4/(4p^2)=p^2/4,
所以(y1y2)/(x1x2)=-4.
【解法二】
弦AB斜率
k=(y1-y2)/(x1-x2)
=(y1-y2)/[(y1^2/2p)-(y2^2/2p)]
=2p/(y1+y2) (1)
而A、F、B三点共线,故
k=(y1-0)/(x1-p/2) (2)
由(1)、(2)得
y1/(x1-p/2)=2p/(y1+y2)
--->y1y2+y1^2=2px1-p^2
而y1^2=2px1
故y1y2=-p^2 (3)
又x1x2=(y1^2/2p)×(y2^2/2p)
=(y1y2)^2/(4p^2)
=(-p^2)^2/(4p^2)
故x1x2=p^2/4 (4)
因此,由(4)÷(3)得
(y1y2)/(x1x2)=-4.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询