已知:如图,在三角形ABC中,AD垂直于BC,垂足为D,BE垂直于AC,垂足为点E,M为AB边中点

 我来答
风林网络手游平台
2022-11-15 · 百度认证:四川风林网络科技有限公司官方账号
风林网络手游平台
向TA提问
展开全部

解:

∵AD⊥BC,BE⊥AC,直角三角形斜边中线等于斜边的一半

∴∠ADB=∠AEB=90°

∵M为AB边的中点

∴ME=½AB,MD=½AB

∴ME=MD=MB

∴∠MBD=∠MDB

∴∠BMD=180°-∠MBD-∠MDB=180°-2∠MBD,

∵ME=½AB=MA

∴∠MAE=∠MEA,

∴∠AME=180°-∠MAE-∠AEM=180°-2∠MAE,

∴∠BMD+∠AME=360°-2(∠MBD+∠MAE)

∵∠MBD+∠MAE=180°-∠C

∴BMD+∠AME=360°-2(180°-∠C)=2∠C

∴∠EMD=180°-(∠BMD+∠AME)=180°-2∠C=2(90°-∠C),

∵∠DAC=90°-∠C,

∴EMD=2∠DAC

【解题思路】

这道题主要考察的是对【等腰三角形】知识点的理解,只要把握住以下三点就很好作答了:

①理解知识点:直角三角形斜边中线等于斜边的一半

②把握题中的条件:M为AB边的中点

③每个角都为60°,三角形三内角和等于180°。

扩展资料

其他证明方式∠EMD=2∠DAC的方式:

解:

∵M为AB边的中点

∴ME=½AB=MA

∴∠MAE=∠MEA,

∴∠BME=2∠MAE,

同理,MD=½AB=MA

∴∠MAD=∠MDA,

∴∠BMD=2∠MAD,

∴∠EMD=∠BME-∠BMD=2∠MAE-2∠MAD=2∠DAC

∴EMD=2∠DAC

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式