二重积分 X型区域和Y行区域如何选择?

 我来答
妖感肉灵10
2022-11-17 · TA获得超过6.2万个赞
知道顶级答主
回答量:101万
采纳率:99%
帮助的人:2.2亿
展开全部

二重积分其实找到规律非常容易在x轴上任取一点x,过该点作一条垂直于x轴的直线去穿区域,与D的边界曲线之交点不多于两个,即一进一出,此区域为X型区域。类似的,在y轴上任取一点y,过该点作一条垂直于y轴的直线去穿区域,与D的边界曲线之交点不多于两个,即一进一出,此区域为Y型区域。

二重积分X型区域

设积分区域是由两条直线x=a,x=b(a<b),两条曲线  围成。可以表示  的区域称为X型区域,如图。X型区域:

特点:穿过D内部且平行于y轴的直线,与D的边界交点数不多于两点。

如图,对任意取定的x0∈[a,b],过点(x0,0,0)作垂直于x轴的平面x=x0,该平面与曲顶柱体相交所得截面是以区间  为底,z=f(x0,y)为曲边的曲边梯形,由于x0的任意性,这一截面的面积为  ,其中y是积分变量在积分过程中视x为常数。上述曲顶柱体可看成平行截面面积S(x)从a到b求定积分的体积,从而得到 [2]  :

二重积分Y型区域

积分区域  称为Y型区域。

特点:穿过D内部且平行于x轴的直线,与D的边界交点数不多于两点。

称D为Y型区域,此时可采用先对x,后对y积分的积分次序,将二重定积分化为累次积分[2]  :

扩展资料:

积分的线性性质

1、性质1 (积分可加性) 函数和(差)的二重积分等于各函数二重积分的和(差),即

2、性质2 (积分满足数乘) 被积函数的常系数因子可以提到积分号外,  (k为常数) 比较性

3、性质3 如果在区域D上有f(x,y)≦g(x,y),则  估值性

4、性质4 设M和m分别是函数f(x,y)在有界闭区域D上的最大值和最小值,σ为区域D的面积,则 

5、性质5 如果在有界闭区域D上f(x,y)=k(k为常数),σ为D的面积,则Sσ=k∫∫dσ=kσ。

二重积分中值定理

设函数f(x,y)在有界闭区域D上连续,σ为区域的面积,则在D上至少存在一点(ξ,η),使得 

参考资料:百度百科-二重积分

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式