2个回答
展开全部
√2/(√2-1)x+1/(√2+1)=2x+1
两边同乘(√2+1)*(√2-1)得
√2*(√2+1)x+√2-1=(2x+1)*(√2+1)*(√2-1)
(2+√2)x+√2-1=2x+1
√2x=2-√2,
x=√2-1
原式=((x+1)/x)÷(x-(1+x²)/(2x))
=((x+1)/x)÷((2x²-1-x²)/2x)
=((x+1)/x)÷((x²-1)/2x)
=((x+1)/x)÷((x+1)(x-1)/2x)
=(x+1)÷x×2x÷(x+1)(x-1)
=2/(x-1)
因为x=√2+1
∴x-1=√2
∴2/(x-1)=2/√2=√2
两边同乘(√2+1)*(√2-1)得
√2*(√2+1)x+√2-1=(2x+1)*(√2+1)*(√2-1)
(2+√2)x+√2-1=2x+1
√2x=2-√2,
x=√2-1
原式=((x+1)/x)÷(x-(1+x²)/(2x))
=((x+1)/x)÷((2x²-1-x²)/2x)
=((x+1)/x)÷((x²-1)/2x)
=((x+1)/x)÷((x+1)(x-1)/2x)
=(x+1)÷x×2x÷(x+1)(x-1)
=2/(x-1)
因为x=√2+1
∴x-1=√2
∴2/(x-1)=2/√2=√2
追问
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询