计算曲面积分∫∫x^3dydz+y^3dzdx+z^3dxdy,∑是上半球面z=根下1-x^2-y^2的上侧
展开全部
在半球面∑上添加圆面S:(x²+y²=1,z=0),使之构成封闭曲面V=∑+S.
∵∫∫x³dydz+y³dzdx+z³dxdy=0 (∵z=0,∴dz=0)
∴ ∫∫x³dydz+y³dzdx+z³dxdy+∫∫x³dydz+y³dzdx+z³dxdy
=∫∫∫(3x²+3y²+3z²)dxdydz (应用高斯公式)
=3∫∫∫(x²+y²+z²)dxdydz
=3∫dθ∫dφ∫r²*r²sinφdr (作球面坐标变换)
=3*(2π)*(cos(0)-cos(π/2))*(1^5/5-0^5/5)
=6π/5
故∫∫x³dydz+y³dzdx+z³dxdy=∫∫∫(3x²+3y²+3z²)dxdydz-∫∫x³dydz+y³dzdx+z³dxdy
=6π/5-0
=6π/5.
∵∫∫x³dydz+y³dzdx+z³dxdy=0 (∵z=0,∴dz=0)
∴ ∫∫x³dydz+y³dzdx+z³dxdy+∫∫x³dydz+y³dzdx+z³dxdy
=∫∫∫(3x²+3y²+3z²)dxdydz (应用高斯公式)
=3∫∫∫(x²+y²+z²)dxdydz
=3∫dθ∫dφ∫r²*r²sinφdr (作球面坐标变换)
=3*(2π)*(cos(0)-cos(π/2))*(1^5/5-0^5/5)
=6π/5
故∫∫x³dydz+y³dzdx+z³dxdy=∫∫∫(3x²+3y²+3z²)dxdydz-∫∫x³dydz+y³dzdx+z³dxdy
=6π/5-0
=6π/5.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询