如图,在三角形abc中,分别以ab,ac为作等边三角形,等边三角形acd,BD与CE相交于点O
展开全部
∵△ABE和△ACD均为等边三角形所以有AE=AB,AD=AC,并且∠EAB=∠DAC=60°,∴∠EAC=∠EAB+∠BCA=∠DAC+∠BCA=∠BAD∴△EAC≌BAD(边角边定理)。∴EC=BD
∵∠BOC是△EOB中∠EOB的外角∴∠BOC=∠EBO+∠BEO=∠EBA+∠ABD+∠BEO∵
△EAC≌BAD∴∠ABD=∠AEC∴带入有∠BOC=∠EBA+∠ABD+∠BEO∠=∠EBA+∠AEC+ ∠BEO=∠EBA+∠BEA∵三角形ABE是等边三角形而∠EBA和∠BEA是该三角形两个内角,∴∠BOC=60°+60°=120°
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询