展开全部
/********************** 输入文件格式有变化。 **************************/
/*
创建多项式A:
4
-1 4
8.75 3
0.5556666 2
1234.456 1
A(x) = -x^4 + 8.75x^3 + 0.555667x^2 + 1234.46x
创建多项式B:
1
6007.0012 0
B(x) = 6007
运算符 : +-*
C(x) = -x^4 + 8.75x^3 + 0.555667x^2 + 1234.46x + 6007
D(x) = -x^4 + 8.75x^3 + 0.555667x^2 + 1234.46x - 6007
E(x) = -6007x^4 + 52561.3x^3 + 3337.89x^2 + 7.41538e+06x
A(2) = 2525.13B(2) = 6007
C(2) = 8532.14
D(2) = -3481.87
E(2) = 1.51685e+07
请按任意键继续. . .
*/
#include <iostream>
#include <cmath>
using namespace std;
#define EPS 1E-6
typedef struct item {
double coefficient;
int power;
struct item *next;
} *POLYNOMIAL,*pItem;
POLYNOMIAL Create() { // 创建多项式
pItem head,p;
double coe;
int pwr,iterms,i;
head = p = new item;
cin >> iterms; // 读入多项式的项数
for(i = 0; i < iterms; ++i) {
cin >> coe >> pwr;
p->next = new item;
p->next->coefficient = coe;
p->next->power = pwr;
p = p->next;
}
p->next = NULL;
return head;
}
void Sort(POLYNOMIAL head) { // 按幂次降排序
pItem pt,q,p = head;
while(p->next) {
q = p->next;
while(q->next) {
if(p->next->power < q->next->power) {
pt = p->next;
p->next = q->next;
q->next = p->next->next;
p->next->next = pt;
}
else q = q->next;
}
p = p->next;
}
}
void Show(POLYNOMIAL head) { // 显示
POLYNOMIAL p = head->隐型姿next;
int flag = 1;
if(p == NULL) return;
while(p) {
if(flag) {
if(fabs(p->coefficient) >= EPS) {
if(p->power == 0) cout << p->coefficient;
else if(p->power == 1) {
if(p->coefficient == 1.0) cout << "x ";
else if(p->coefficient == -1.0) cout << "-x ";
else cout << p->coefficient << "x ";
}
else if(p->coefficient == 1.0) cout << "x^" << p->power << " ";
else if(p->coefficient == -1.0) cout << "-x^" << p->power << " ";
else cout << p->coefficient << "x^" << p->power << " ";
flag = 0;
}
}
else if(p->coefficient > 0.0 && fabs(p->coefficient) >= EPS) {
if(p->power == 0) cout << "+ " << p->coefficient << " ";
else if(p->power == 1) {
if(p->coefficient 灶绝== 1.0) cout << "+ x ";
else cout <租穗< "+ " << p->coefficient << "x ";
}
else if(p->coefficient == 1.0) cout << "+ x^" << p->power << " ";
else cout << "+ " << p->coefficient << "x^" << p->power << " ";
}
else if(p->coefficient < 0.0 && fabs(p->coefficient) >= EPS) {
if(p->power == 0) cout << "- " << -p->coefficient << " ";
else if(p->power == 1) {
if(p->coefficient == -1.0) cout << "- x ";
else cout << "- " << -p->coefficient << "x ";
}
else if(p->coefficient == -1.0) cout << "- " << "x^" << p->power << " ";
else cout << "- " << -p->coefficient << "x^" << p->power << " ";
}
p = p->next;
}
cout << endl;
}
double Power(double x,int n) {
double value = 1.0;
int i;
for(i = 0; i < n; ++i) value *= x;
return value;
}
double Value(POLYNOMIAL head,double x) { // 多项式求值
POLYNOMIAL p;
double value = 0.0;
for(p = head->next; p; p = p->next)
value += p->coefficient * Power(x,p->power);
return value;
}
POLYNOMIAL Copy(POLYNOMIAL A) {
POLYNOMIAL head,t,p;
head = t = new item;
for(p = A->next; p; p = p->next) {
t->next = new item;
t->next->coefficient = p->coefficient;
t->next->power = p->power;
t = t->next;
}
t->next = NULL;
return head;
}
POLYNOMIAL Additive(POLYNOMIAL A, POLYNOMIAL B) { // 多项式加
POLYNOMIAL head,p,q,t;
head = Copy(A);
for(p = B; p->next; p = p->next) {
q = head;
while(q->next) {
if(p->next->power == q->next->power) {
q->next->coefficient += p->next->coefficient;
if(fabs(q->next->coefficient) <= EPS) {
t = q->next;
q->next = t->next;
free(t);
}
break;
}
q = q->next;
}
if(q->next == NULL) {
q->next = new item;
q->next->coefficient = p->next->coefficient;
q->next->power = p->next->power;
q->next->next = NULL;
}
}
Sort(head);
return head;
}
POLYNOMIAL Subtract(POLYNOMIAL A, POLYNOMIAL B) { // 多项式减
POLYNOMIAL head,p,q,t;
head = Copy(A);
for(p = B; p->next; p = p->next) {
q = head;
while(q->next) {
if(p->next->power == q->next->power) {
q->next->coefficient -= p->next->coefficient;
if(fabs(q->next->coefficient) <= EPS) {
t = q->next;
q->next = t->next;
free(t);
}
break;
}
q = q->next;
}
if(q->next == NULL) {
q->next = new item;
q->next->coefficient = -p->next->coefficient;
q->next->power = p->next->power;
q->next->next = NULL;
}
}
Sort(head);
return head;
}
POLYNOMIAL Multiplication(POLYNOMIAL A, POLYNOMIAL B) { // 多项式乘
POLYNOMIAL head,t,p,q;
head = t = new item;
for(p = A->next; p; p = p->next) { // 完成相乘过程
for(q = B->next; q; q = q->next) {
t->next = new item;
t->next->coefficient = p->coefficient * q->coefficient;
t->next->power = p->power + q->power;
t = t->next;
}
}
t->next = NULL;
Sort(head); // 排序
p = head;
while(p->next) { // 合并同类项
q = p->next;
while(q->next) {
if(p->next->power == q->next->power) {
p->next->coefficient += q->next->coefficient;
t = q->next;
q->next = t->next;
free(t);
}
else q = q->next;
}
p = p->next;
}
return head;
}
void FreeMemory(POLYNOMIAL head) {
POLYNOMIAL q,p = head;
while(p) {
q = p;
p = q->next;
delete q;
}
}
int main() {
char ops[3];
POLYNOMIAL A,B,C = NULL,D = NULL,E = NULL;
cout << "创建多项式A:\n";
A = Create();
Sort(A);
cout << "A(x) = ";Show(A);
cout << "创建多项式B:\n";
B = Create();
Sort(B);
cout << "B(x) = ";Show(B);
cout << "运算符 : ";
fflush(stdin);
gets(ops);
for(int i = 0; ops[i]; ++i) {
switch(ops[i]) {
case '+' : C = Additive(A,B);
cout << "C(x) = ";
Show(C);
break;
case '-' : D = Subtract(A,B);
cout << "D(x) = ";
Show(D);
break;
case '*' : E = Multiplication(A,B);
cout << "E(x) = ";
Show(E);
break;
default : cout << "不能识别运算符 : " << ops[i] << endl;
}
}
cout << "A(2) = " << Value(A,2.0) << endl;
cout << "B(2) = " << Value(B,2.0) << endl;
if(C) cout << "C(2) = " << Value(C,2.0) << endl;
if(D) cout << "D(2) = " << Value(D,2.0) << endl;
if(E) cout << "E(2) = " << Value(E,2.0) << endl;
FreeMemory(A);
FreeMemory(B);
FreeMemory(C);
FreeMemory(D);
FreeMemory(E);
return 0;
}
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询