在蛋白质的a-螺旋的情况下是N-H…O型的氢键,DNA的双螺旋情况下是N-H…O,N-H…N型的氢键,因为这些结构是稳定的,所以这样的氢键很多。此外,水和其他溶媒是异质的,也由于在水分子间生成O-H—…O型氢键。因此,这也就成为疏水结合形成的原因。
1、存在与电负性很大的原子A 形成强极性键的氢原子 。
2、存在 较小半径、较大电负性瞎洞、含孤对电子、带有部分负电荷的原子B (F、O、N)
氢键的本质: 强极性键(A-H)上的氢核 与电负性很大的、含孤电子对并带有部分负电荷的原子B之间的静电作用力。
3、表示氢键结合的通式
氢键结合的情况如果写成通式,可用X-H…Y表示。式中X和Y代表F,O,N等电负性大而原子半径较小的非金属原子。
X和Y可以是两种相同的元素,也可以是两种不同的元素。
4、对氢键的理解
氢键存在虽然很普遍,对它的研究也在逐步深入,但是人们对氢键的定义至今仍有两种不同的理解。
第一种把X-H…Y整个结构叫氢键,因此氢键的键长就是指X与Y之间的距离,例如F-H…F的键长为255pm。
第二种把H…Y叫做氢键,这样H…F之间的距离163pm才算是氢键的键长。这种差别,我们在选用氢键键长数据时要加以注意。
不过,对氢键键能的理解上是一致的,都是指把X-H…Y-H分解成为HX和HY所需的能量。
5、氢键的饱和性和方向性
氢键不同于范德华力,它具有饱和性和方向性。由于氢原子特别小而原子A和B比较大,所以A—H中的氢原子只能和一个B原子结合形成氢键。同时由于负离子之间的相互排斥,另一个电负性大的原子B′就难于再接近氢原子,这就是氢键的饱和性。
氢键具有方向性则是由于电偶极矩A—H与原子B的相互作用,只有当A—H…B在同一条直线上时最强,同时原子B一般含有未共用电子对,在可能范围内氢键的方向和未共用电子对的对称轴一致,这样可使原子B中负电荷分布最多的部分最接近氢原子,这样形成的氢键最稳定。
影响
1、 与同族的化合物相比,NH3、H2O和HF具有反常高的熔点和沸磨羡枯点。
2、 氨在水中的非常大的溶解度与它和水分子间的氢键有关。
3、 甘油、无水磷酸和硫酸具有较大的黏度。
4、 邻硝基苯酚中存在分子内氢键,因此熔点较间硝基苯酚和对硝基苯酚低。
5、 冰中水分子在冰晶体结构中空间占有率较低,因而冰密度较小,甚至小于水。
6、 分子内形成氢键常使酸性增强。如苯甲酸的pKa=11.02,而邻羟基苯甲酸的pKa=11,2,6-二羟基苯甲酸可在分子内形成两个氢键,它的pKa=8.3。其原因是分子内氢键的形成,促进了氢的解离。
7、 结晶水合物中存在由氢键构建的类冰骨架,其中可装入小分子或离子。参见甲烷气水包合物。
8、 C=O…H-N氢键使蛋白质形成α螺旋。
9、 DNA(去氧核糖核酸)中两条链的碱基通过氢键配对,而氢键的饱和性和方向性使得双螺旋的碱基配对具有专一性,即A-T靠2个氢键配对而C-G靠3个氢键配对。
特征
氢键通常被描述为静电 偶极-偶极相互作用。然派滑而,它也有一些共价键的特点:它是有方向的和牢固的,产生的原子间距离比范德华半径的总和还短,并且通常涉及有限数量的相互作用伙伴,这可以解释为一种价态. 当受体结合来自更多电负性供体的氢时,这些共价特征更加重要。
作为更详细的标准列表的一部分,IUPAC 出版物承认吸引相互作用可能来自静电(多极-多极和多极诱导的多极相互作用)、共价性(通过轨道重叠的电荷转移)和色散(伦敦)的某种组合。力),并指出每个的相对重要性将因系统而异。然而,该标准的一个脚注建议排除其中色散是主要贡献者的相互作用,特别是将 Ar---CH4和 CH4---CH4作为此类相互作用的示例,从定义中排除。
然而,该标准的一个脚注建议排除其中色散是主要贡献者的相互作用,特别是将 Ar---CH4和 CH4---CH4作为此类相互作用的示例,从定义中排除。
尽管如此,大多数介绍性教科书仍然将氢键的定义限制在开头段落中描述的“经典”类型的氢键。
已知较弱的氢键与硫 (S) 或氯 (Cl) 等元素结合的氢原子;甚至碳 (C) 也可以作为供体,特别是当碳或其邻居之一是负电时(例如,在氯仿、醛和末端乙炔中)。
逐渐地,人们认识到有许多较弱的氢键的例子涉及供体而非 N、O 或 F 和/或受体 Ac,其电负性接近氢的电负性(而不是更具电负性)。
尽管这些“非传统”氢键相互作用通常很弱(~1 kcal/mol),但它们也无处不在,越来越多地被认为是药物化学中受体-配体相互作用或材料内/分子间相互作用的重要控制元件科学。
以上内容参考 百度百科-氢键
2013-09-16
推荐于2017-11-26
⑴ 同种分子之间
现以HF为例说明氢键的形成。在HF分子中,由于F的电负性(4.0)很大,共用电子对强烈偏向F原子一边,而H原子核外只有一个电子,其电子云向F原子偏移的结果,使得它几乎要呈质子状态。这个半径很小、无内层电子的带部分正电荷的氢原子,使附近另一个HF分子中含有孤电子对并带部分负电荷的F原子有可能充分靠近它,从而产生静电吸引作用。这个静电吸引作用力就是所谓氢键。例如 HF与HF之间:
⑵ 不同种分子之间
不仅同种分子之间可以存在氢键,某些不同种分子之间也可能形成氢键。例如 NH3与H2O之间:
氢键形成的条件
⑴ 与电负性很大的原子A 形成强极性键的氢原子
⑵ 较小半径、较大电负性、含孤电子对、带有部分负电荷的原子B (F、O、N)
氢键的本质: 强极性键(A-H)上的氢核, 与电负性很大的、含孤电子对并带有部分负电荷的原子B之间的静电引力。}
⑶ 表示氢键结合的通式
氢键结合的情况如果写成通式,可用X-H…Y①表示。式中X和Y代表F,O,N等电负性大而原子半径较小的非金属原子。
X和Y可以是两种相同的元素,也可以是两种不同的元素。
⑷ 对氢键的理解
氢键存在虽然很普遍,对它的研究也在逐步深入,但是人们对氢键的定义至今仍有两种不同的理解。
第一种把X-H…Y整个结构叫码悉氢键,因此氢键的键长就是指X与Y之间的距离,例如F-H…F的键长为255pm。
第二种把H…Y叫做氢键,这样H…F之间的距离163pm才算是氢键的键长。这种差别,我们在选用氢键键长数据时要加以注意。
不过,对氢键键能的理解上是一致的,都是指把X-H…Y-H分解成为HX和HY所需的能量。
2.氢键的强度
氢键的牢固程度——键强度也可以用键能来表示。粗略而言,氢键键能是指每拆开单位物质的量的H…Y键所需的能量。氢键的键能一般在42kJ·mol-1以下,比共价键的键能小得多,而与分子间力更为接近些。例如, 水分子中共价键与氢键的键能是不同的。
而且,氢键的形成和破坏所需的活化能也小,加之其形成的空间条件较易出现,所以在物质不断运动情况下,氢键可以不断形成和断裂。
3.分子内氢键
某些分子内,例如HNO3、邻硝基苯酚分子可以形成分子内氢键。分子内氢键由于受环状结构的限制,X-H…Y往往不能在同一直线上。如图所示
4.氢键形成对物质性质的影响
氢键通常是物质在液态时形成的,但形成后有时也能继续存在于某些晶态甚至气态物质之中。例如在气态、液态和固态的HF中都有氢键存在。能够形成氢键的物质是很多的,如水、水合物、氨合物、无机酸和某些有机化合物。氢键的存在,影响到物质的某些性质。
(1)熔点、沸点
分子间有氢键的物质熔化或气化时,除了要克服纯粹的分子间力外,还必须提高温度,额外地供应一份能量来破坏分子间的氢键,所以这些物质的熔点、沸点比同系列氢化物的熔点、沸点高。分子内生成氢键,熔、沸点常降低。例如有分子内氢键的邻硝基苯酚熔点(45℃)比有分子间氢键的间位熔点(96℃)和对位熔点(114℃)都低。
(2)溶解度
在宽模空极性溶剂中,如果溶质分子与溶剂分子之间可以形成氢键,则溶质的溶解度增大。HF和HN3在水中的溶解度比较大,就是这个缘故。
(3)粘度
分子间有氢键的液体,一般粘度较大。例如甘油、磷酸、浓硫酸等多羟基化合物,由于分子间可形成众多的氢键,这些物质通常为粘稠状液体。
(4)密度
液体分子间若形成氢键,有可能发生缔合现象,例如液态HF,在通常条件下,除了正常简单的HF分子外,还有通过氢键联系在一起的复杂分子(HF)n。 nHF(HF)n
其中n可以是2,3,4…。这种由若干个简单分子联成复杂分子而又不会改变原物质化学性质的现象,称为分子缔合。分子缔合的结果会影响液体的密度。
H2O分子之间也有缔合现象。 nH2O(H2O)n
常温下液态水中除了简单H2O分子外,还有(H2O)2,(H2O)3,…,(H2O)n等缔合分子存在。降低温度,有利于水分子的缔合。温度降慎瞎至0℃时,全部水分子结成巨大的缔合物——冰。
氢键形成对物质性质的影响
分子间氢键使物质的熔点(m.p)、沸点(b.p)、溶解度(S)增加; 分子内氢键对物质的影响则反之。
广告 您可能关注的内容 |