己知{an}是 等差数列,其前n项和为Sn,{bn}是等比数列,且a1=b1=2,a4+b4=27
己知{an}是等差数列,其前n项和为Sn,{bn}是等比数列,且a1=b1=2,a4+b4=27,S4-b4=10,(1)求数列{an}与{bn}的通项公式;(2)记Tn...
己知{an}是 等差数列,其前n项和为Sn,{bn}是等比数列,且a1=b1=2,a4+b4=27,S4-b4=10,(1)求数列{an}与{bn}的通项公式;(2)记Tn=anb1+a(n-1)b2+...+a1bn,n∈N*,证明:Tn+12=-2an+10bn(n∈N*)
展开
1个回答
展开全部
∵a4+b4=27,s4-b4=10 ∴a4+S4=37 ∴a4+2a1+2a4=37 ∴2a1+3a4=37
∴5a1+9d=37 ∴9d=27 ∴d=3 ∴an=a1+(n-1)d=3n-1
∵a4+b4=27 ∴11+2q³=27 ∴q³=8 ∴q=2 ∴bn=b1q^(n-1)=2^n
∵Tn=anb1+an-1b2+...+a1bn ∴2Tn=anb2+an-1b3+...+a2bn+a1bn+1
两式相减得:Tn=(an-an-1)b2+(an-1-an-2)b3+...+(a2-a1)bn+a1bn+1-anb1
=3(b2+b3+...+bn)+a1bn+1-anb1
=3×2²[2^(n-1)-1]+2×2^(n+1)-2an
=3×2×2^n-12+4×2^n-2an
=6bn-12+4bn-2an
∴Tn=10bn-12-2an 即 Tn+12=﹣2an+10bn
∴5a1+9d=37 ∴9d=27 ∴d=3 ∴an=a1+(n-1)d=3n-1
∵a4+b4=27 ∴11+2q³=27 ∴q³=8 ∴q=2 ∴bn=b1q^(n-1)=2^n
∵Tn=anb1+an-1b2+...+a1bn ∴2Tn=anb2+an-1b3+...+a2bn+a1bn+1
两式相减得:Tn=(an-an-1)b2+(an-1-an-2)b3+...+(a2-a1)bn+a1bn+1-anb1
=3(b2+b3+...+bn)+a1bn+1-anb1
=3×2²[2^(n-1)-1]+2×2^(n+1)-2an
=3×2×2^n-12+4×2^n-2an
=6bn-12+4bn-2an
∴Tn=10bn-12-2an 即 Tn+12=﹣2an+10bn
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询