二元函数连续、偏导数存在、可微之间的关系
展开全部
二元函数连续、偏导数存在、可微之间的关系:
书上定义:
可微一定可导,可导一定连续。可导不一定可微,连续不一定可导。
1、若二元函数f在其定义域内某点可微,则二元函数f在该点偏导数存在,反过来则不一定成立。
2、若二元函数函数f在其定义域内的某点可微,则二元函数f在该点连续,反过来则不一定成立。
3、二元函数f在其定义域内某点是否连续与偏导数是否存在无关。
4、可微的充要条件:函数的偏导数在某点的某邻域内存在且连续,则二元函数f在该点可微。
判断可导、可微、连续的注意事项:
1、在一元的情况下,可导=可微->连续,可导一定连续,反之不一定。
2、二元就不满足以上的结论,在二元的情况下:
(1)偏导数存在且连续,函数可微,函数连续。
(2)偏导数不存在,函数不可微,函数不一定连续。
(3)函数可微,偏导数存在,函数连续。
(4)函数不可微,偏导数不一定存在,函数不一定连续。
(5)函数连续,偏导数不一定存在,函数不一定可微。
(6)函数不连续,偏导数不一定存在,函数不可微。
富港检测东莞有限公司
2024-12-25 广告
2024-12-25 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);做正弦振动找富港,富港工业检测技术有限公司是一家专业的第三方检测机构,拥有完善的质量管理体系,先进的检测设备,优秀的技术人才;已取得CNAS、CMA、IS...
点击进入详情页
本回答由富港检测东莞有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询