2.26 有一个电偶极矩为p的偶极子,位于到无穷大导体平面距离为d处,求偶极子所受的力
展开全部
根据电偶极子与导体平面之间的相互作用,可以利用电偶极子的极化产生电场与平面的感应电荷产生逆向电场之间的作用来计算电偶极子所受的力。
假设电偶极子的两个电荷之间的距离为2l,电荷为+q和-q,电荷之间的电势能为U。
则电偶极矩的定义为p = q * 2l。
在无穷大导体平面上,由于电导体的特性,导体上的感应电荷会使得平面的电势为零。
电偶极子所在的位置,导体平面上会产生一个电势为 V = k * p * l / (d^2 + l^2)。
其中,k为电场介质中的介质常数。
由电势能的定义,电偶极子在平面上所受的力为F = -dU/dl。
利用电势能的变化与电势之间的关系,可以得到:
F = -dU/dl = -dq/dl * dV/dl = q * dV/dl。
将电势V的表达式带入,可以得到:
F = q * dV/dl = q * d(k * p * l / (d^2 + l^2))/dl。
对上式进行求导,可得:
F = q * k * p * (2l * (d^2 + l^2) - l * 2d * 2d) / (d^2 + l^2)^2。
= 2q * k * p * (l * (d^2 + l^2) - l * 2d * 2d) / (d^2 + l^2)^2。
将电偶极矩p = q * 2l代入,可以得到:
F = 4q^2 * k * l * (l * (d^2 + l^2) - l * 2d * 2d) / (d^2 + l^2)^2。
所以,偶极子所受的力为F = 4q^2 * k * l * (l * (d^2 + l^2) - l * 2d * 2d) / (d^2 + l^2)^2。
假设电偶极子的两个电荷之间的距离为2l,电荷为+q和-q,电荷之间的电势能为U。
则电偶极矩的定义为p = q * 2l。
在无穷大导体平面上,由于电导体的特性,导体上的感应电荷会使得平面的电势为零。
电偶极子所在的位置,导体平面上会产生一个电势为 V = k * p * l / (d^2 + l^2)。
其中,k为电场介质中的介质常数。
由电势能的定义,电偶极子在平面上所受的力为F = -dU/dl。
利用电势能的变化与电势之间的关系,可以得到:
F = -dU/dl = -dq/dl * dV/dl = q * dV/dl。
将电势V的表达式带入,可以得到:
F = q * dV/dl = q * d(k * p * l / (d^2 + l^2))/dl。
对上式进行求导,可得:
F = q * k * p * (2l * (d^2 + l^2) - l * 2d * 2d) / (d^2 + l^2)^2。
= 2q * k * p * (l * (d^2 + l^2) - l * 2d * 2d) / (d^2 + l^2)^2。
将电偶极矩p = q * 2l代入,可以得到:
F = 4q^2 * k * l * (l * (d^2 + l^2) - l * 2d * 2d) / (d^2 + l^2)^2。
所以,偶极子所受的力为F = 4q^2 * k * l * (l * (d^2 + l^2) - l * 2d * 2d) / (d^2 + l^2)^2。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询