高阶无穷小等于低阶无穷小吗?为什么

 我来答
张老师休闲娱乐
高能答主

2023-06-30 · 销售
张老师休闲娱乐
采纳数:484 获赞数:44523

向TA提问 私信TA
展开全部

高阶无穷小加低阶无穷小等于低阶无穷小。

若lim(β/α)=0,则称“β是比α较高阶的无穷小”。意思是在某一过程(x→x0或x→∞这类过程)中,β→0比α→0快一些。

在同一个变化过程中的两个无穷小,虽然同时都趋向于零,但是它们趋向于零的快慢程度有时却不一样,甚至差别很大。实际问题中,有时需要讨论这种趋向零的快慢。

无穷小量是数学分析中的一个概念,在经典的微积分或数学分析中,无穷小量通常以函数、序列等形式出现。无穷小量即以数0为极限的变量,无限接近于0。

确切地说,当自变量x无限接近x0(或x的绝对值无限增大)时,函数值f(x)与0无限接近,即f(x)→0(或f(x)=0),则称f(x)为当x→x0(或x→∞)时的无穷小量。特别要指出的是,切不可把很小的数与无穷小量混为一谈。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式