已知积分上限为0,如何求不定积分上限?
1个回答
展开全部
∫xlnxdx=(1/2)x²lnx-(1/4)x²+C(C为积分常数)。
解答过程如下:
∫xlnxdx
=(1/2)∫lnxd(x²)
=(1/2)x²lnx-(1/2)∫x²*(1/x)dx
=(1/2)x²lnx-(1/2)∫xdx
=(1/2)x²lnx-(1/4)x²+C
不定积分的公式:
1、∫adx=ax+C,a和C都是常数
2、∫x^adx=[x^(a+1)]/(a+1)+C,其中a为常数且a≠-1
3、∫1/xdx=ln|x|+C
4、∫a^xdx=(1/lna)a^x+C,其中a>0且a≠1
5、∫e^xdx=e^x+C
6、∫cosxdx=sinx+C
7、∫sinxdx=-cosx+C
8、∫cotxdx=ln|sinx|+C=-ln|cscx|+C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询