2013-09-19
展开全部
极坐标的形式表示: r = 1 + cos θ
在笛卡儿坐标系中,心脏线的参数方程为: x(t)=a(2cost-cos2t) y(t)=a(2sint-sin2t) 其中r是圆的半径。曲线的尖点位于(r,0)。 在极坐标系中的方程为: ρ(θ)=2r(1-cosθ)
在笛卡儿坐标系中,心脏线的参数方程为: x(t)=a(2cost-cos2t) y(t)=a(2sint-sin2t) 其中r是圆的半径。曲线的尖点位于(r,0)。 在极坐标系中的方程为: ρ(θ)=2r(1-cosθ)
2013-09-19
展开全部
心形线
t=1
r=10*(1+cos(t*360))
t=1
theta=t*360*4
r=1+cos(t*360*5)
t=1
theta=t*360*5
r=8+5*sin(t*360*5*5)*t
t=1
r=10*(1+cos(t*360))
t=1
theta=t*360*4
r=1+cos(t*360*5)
t=1
theta=t*360*5
r=8+5*sin(t*360*5*5)*t
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询