举一反三分数应用题分合法操练二的题目

 我来答
匿名用户
2013-09-19
展开全部
一、加法的种类:(2种)

1.已知一部分数和另一部分数,求总数。

例:小明家养灰兔8只,养白兔4只。一共养兔多少只?

想:已知一部分数(灰兔8只)和另一部分数(白兔4只)。求总数。

列式:8+4=12(只)答:(略)

2.已知小数和相差数,求大数。

例:小利家养白兔4只,灰兔比白兔多3只。灰兔有多少 只?

想:已知小数(白兔4只)和相差和(灰兔比白兔多3只),求大数。(灰兔的只数。)

列式:4+3=7(只) 答:(略)

二、减法有3种:

1.已知总数和其中一部分数,求另一部分数。

例:小丽家养兔12只,其中有白兔8只,其余的是灰兔,灰兔有多少只?

想:已知总数(12只),和其中一部分数(白兔8只),求另一部分数(灰兔有多少只?)

列式:12—8=4(只)

2.已知大数和相差数,求小数。

例:小强家养白兔8只,养的白兔比灰兔多3只。养灰兔多少只?

想:已知大数(白兔8只)和相差数(白兔比灰兔多3只),求小数(灰兔有多少只?)

列式:8-3=5(只)

3.已知大数和小数,求相差数。

例:小勇家养白兔8只,灰兔5只。白兔比灰兔多多少只?

想:已知大数(白兔8只)和小数(灰兔5只),求相差数。(白兔比灰兔多多少只?)

列式:8-5=3(只)

三、乘法有2种:

1.已知每份数和份数。求总数。

例:小利家养了6笼兔子,每笼4只。一共养兔多少只?

想:已知每份数(4只)和份数(6笼),求总数(一共养兔多少只?)也就是求6个4是多少 。用乘法计算。

列式:4×6=24(只)

本类应用题值得一提的是,一定要学生分清份数与每份数两者关系,计算时一定不要列反题。不得改变两者关系。

即:每份数×份数=总数。

决不可以列式:份数×每份数=总数。

2.求一个数的几倍是多少?

例:白兔有8只,灰兔的只数是白兔的2倍。灰兔有多少只?

想:白兔有8只,灰兔的只数是白兔的2倍,也就是说:灰兔有白兔只数两个那么多,就是求2个8只是多少?

列式:8×2=16(只)

四、除法有4种:

1.已知总数和份数,求每份数。

例:小强有15个苹果,平均放在3个盘子里,平均每盘放几个苹果?

想:已知总数(15个),份数(放3盘)。求每份数(每盘放几个?)也就是把15平均分成3份,求每份是多少。

列式:15÷3=5(个)

2.已知总数和每份数,求份数。

例:小强有15个苹果,每5个放一盘,可以放几盘?

想:因为已知总数(15个苹果)和每份数(5个放一盘)求可以放几盘?也就是看25里面有几个5,就可以放几盘?

列式:15÷5=3(盘)

3.求一个数是另一个数的几倍。

例:小勇有15个苹果,有5个梨,苹果的个数是梨的几倍?

想:看苹果的个数里面有几个梨的个数,就是梨的几倍。即求一个数是另一个数的几倍。

列式:15÷5=3

4.已知一个数的几倍是多少,求这个数。(用除法来计算。)

综上所述,把千变万化各种内容的应用题按照其数量关系所特有的内函和外延概括出各自的规律。使学生认识了应用题中的各类数时关系的规律,并掌握各自解题规律。反过来根据这些规律性准确而迅速地化解应用题。使知识转化为能力。这样可以起到举一反三,触类旁通的作用。为今后解答复合应用题打下坚实的基矗

但是如果学生学到三年级,一步简单应用题已经学完了,教者不能及时地以不同的数量关系的规律性、系统性加以总结和指导,学生仍按感性认知,对各类应用题的数量关系的概念只有模糊认识。那么在解题时就会出现:遇到“比……多……”就用加法来计算;遇到“比……少……”就用减法来计算;或有“倍”字的题就用乘法来计算的混淆观念。如果能为学生分清应用题的数量关系的类型,如果出现上述问题时,教师可以从规律上加以指导:“你用加法来计算,想一想你算的这道(或这步)应用题是属于哪一类加法应用题的数量关系?(因为加法只有2类),如果你对不上类型,你一定是算错了。”

在教学两步或两步以上复合应用题时,也要时刻强调:解答复合应用题的每一步都离不开上述十一类的数量关系。虽然世间的事物千变万化,但是在“+、-、×、÷”这四种运算中,数量之间的关系都不会离开上述某一个类型。只有清晰地掌握这十一种关系,才掌握了解题的规律。例如:

同学们植了350棵树,其中200棵是松树,其余全是杨树。松树比杨树多植多少棵?

分析:这是一道有两个已知条件的两步计算。三年级学生刚接触很容易与一步应用题的解法相混。那么只有学生清晰地掌握了基本类型中的“已知大数和小数,求相差数。”这一类数量关系。教者可以从问题入手,应用“分析法”来引导:(1)求“栽的松树比杨树多多少棵?:要求是什么数?(是相差数)。(2)要求相差数,必须已知哪两个数?[大数(松树的棵数)与小数(杨树的棵数)](3)大数与小数的数量题中告诉我们了吗?告诉了,是多少?没告诉怎么办?[大数(松树200棵)已知。小数(杨树的棵数)不知道。必须先求出杨树有多少棵?]

这样就顺理成章地找出解答本题的关键一环——中间问题:杨树有多少棵?

解题:

(1)杨树有多少棵?

想(说算理):已知总数(350棵)和一部分数(200棵),求另一部分数(杨树的棵数)[用减法来计算]

350-200=150(棵)

(2)松树比杨树多多少棵?

想(说算理):已知数(200棵)和小数(150棵)求相差数,(用减法来计算)

200-150=50(棵)

从上面明显看出:使学生正确理解和掌握解答应用题的方法,首先必须使学生清晰地掌握以上十一种类量关系。在解答复合应用题时,每一步都离不开这种关系。虽然应用题的内容千变万化,但是在“+、-、×、÷”四种运算的过程中,每一步的数关系都不会离开上述十一种关系中的某一种。只有让学生清晰地掌握了这十一种数量关系,才能掌握了解答应用题的规律。才能达到高屋建瓴,纲举目张的作用。

同时,教学应用题的解法时,尽量引导学生运用线段分析图示之,使学生有了第一感知印象,达到数形统一。并要教给学生“综合分析法”等思考方法。这使学生对解答一般复合应用题就不会望而怯步,而会学趣盈然,解答起来,得心应手。甲,乙两车运一堆煤,运完后,甲车运了总数的十五分之七多12顿,比乙车多运二分之一,甲车运了多少吨?
匿名用户
2013-09-19
展开全部
1 六一班男生占全班人数的3/5还多4人,女生正好占总人数的1/3,全班有多少人?

思路:女生占全班的1/3,则男生占全班的:2/3
又男生占全班的3/5多4人,说明全班的2/3比全班的3/5多4人。

即全班人数是:4/[2/3-3/5]=60人。

2 六二班男生占总人数的2/3少4人,女生正好占总人数的2/5,全班有多少人?

思路同上。男生占全班的:1-2/5=3/5
又男生占全班的2/3少4人,说明全班的2/3比全班的3/5多4人

那么全班的人数是:4/[2/3-3/5]=60人。

3 六三班有男生占全班人数的2/5多3人,女生占全班人数的4/7少1人,全班有多少人?

思路:女生占全班的4/7少1 人,则男生就是占全班的:3/7多1人。
又男生占全班的:2/5多3人,说明全班的:3/7比全班的2/5多:3-1=2人

那么全班的人数是:2/[3/7-2/5]=70人
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2013-09-19
展开全部
你能把题目说出来吗
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式