求解反常积分,谢谢!
3个回答
展开全部
∫[0-->+∞] (sinx)^2/x^2 dx
=(1/2)*∫[0-->+∞] (1-cos2x)/x^2dx
=(1/2)*∫[0-->+∞] 1/x^2dx-(1/2)*∫[0-->+∞] cos2x/x^2dx
=(1/2)*∫[0-->+∞] 1/x^2dx-(1/2)*∫[0-->+∞] cos2x/d(1/x)
=(1/2)*[0-->+∞] (-1/x)-(1/2)*[0-->+∞] cos2x/x+(1/2)*∫[0-->+∞] sin2x/xdx
后面那个积分作变量代换2x=t
=(1/2)*[0-->+∞] (cos2x-1)/x+[0-->+∞] ∫sint/tdt
前面这个式子,对于上限+∞和下限0,结果都为0
=∫[0-->+∞] sinx/xdx
=π/2
=(1/2)*∫[0-->+∞] (1-cos2x)/x^2dx
=(1/2)*∫[0-->+∞] 1/x^2dx-(1/2)*∫[0-->+∞] cos2x/x^2dx
=(1/2)*∫[0-->+∞] 1/x^2dx-(1/2)*∫[0-->+∞] cos2x/d(1/x)
=(1/2)*[0-->+∞] (-1/x)-(1/2)*[0-->+∞] cos2x/x+(1/2)*∫[0-->+∞] sin2x/xdx
后面那个积分作变量代换2x=t
=(1/2)*[0-->+∞] (cos2x-1)/x+[0-->+∞] ∫sint/tdt
前面这个式子,对于上限+∞和下限0,结果都为0
=∫[0-->+∞] sinx/xdx
=π/2
追问
不好意思,这不是这个反常积分吧?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询