已知数列{an}
已知数列{an}满足a1=4/3,且an+1=〔4(n+1)an〕/(3an+n)(n∈N*).(1)求1/a1+2/a2+…+n/an的值;(2)求证:a1+a2/2+...
已知数列{an}满足a1=4/3,且an+1=〔4(n+1)an〕/(3an+n)(n∈N*).
(1)求1/a1+2/a2+…+n/an的值;
(2)求证:a1+a2/2+a3/3+…+an/n≤n+7/12-1/4^n 展开
(1)求1/a1+2/a2+…+n/an的值;
(2)求证:a1+a2/2+a3/3+…+an/n≤n+7/12-1/4^n 展开
3个回答
展开全部
(1)An+ι=4(n+1)An/(3An+n)
∴4(n+1)/An+ι=n/An+3
令Bn=n/An,则4Bn+ι=Bn+3
4(Bn+ι-1)=Bn-1
故数列{Bn-1}为等比数列
则Bn=1+(1/4)^(n-1)(Bι-1)
=1-(1/4)^n
则1/A1+2/A2+3/A3+···+n/An
=B1+B2+B3+···+Bn
=n-1/3+1/3(1/4)^n.
(2)证明:An=n/Bn
=n*4^n/(4^n-1)
An/n=4^n/(4^n-1)
=1-1/(4^n-1)
<1-1/4^n(n≥2)
∴A1+A2/2+A3/3+···+An/n
≤4/3+(n-1)-1/12+1/3(1/4)^n
=n+1/4+1/3〔1-(4^n-1)/4^n〕
≤n+7/12-1/4^n
(注:(4^n-1)/3≥1)
∴4(n+1)/An+ι=n/An+3
令Bn=n/An,则4Bn+ι=Bn+3
4(Bn+ι-1)=Bn-1
故数列{Bn-1}为等比数列
则Bn=1+(1/4)^(n-1)(Bι-1)
=1-(1/4)^n
则1/A1+2/A2+3/A3+···+n/An
=B1+B2+B3+···+Bn
=n-1/3+1/3(1/4)^n.
(2)证明:An=n/Bn
=n*4^n/(4^n-1)
An/n=4^n/(4^n-1)
=1-1/(4^n-1)
<1-1/4^n(n≥2)
∴A1+A2/2+A3/3+···+An/n
≤4/3+(n-1)-1/12+1/3(1/4)^n
=n+1/4+1/3〔1-(4^n-1)/4^n〕
≤n+7/12-1/4^n
(注:(4^n-1)/3≥1)
展开全部
这道题太难了才五分,能提高点儿吗?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询