怎么求耐克函数的单调性?
推荐于2017-11-26
展开全部
一般地:函数f(x)=ax+b/x,(a>0,b>0)叫做双钩函数。
该函数是奇函数,图象关于原点对称。位于第一、三象限。
当x>0时,由基本不等式可得:y ≥2√ab
当且仅当ax=b/x,即x=√(b/a)时取等号。
故其顶点坐标为(√(b/a),2√ab),图象在(0,√(b/a))上是单调递减的,在(√(b/a),+∝)上是单调递增
同理:当x<0时,由基本不等式可得:y≤-2√ab
当且仅当ax=b/x,即x=-√(b/a)时取等号。
故其顶点坐标为(-√(b/a),-2√ab),
图象在(-∝,-√(b/a))上是单调递增,
在(-√(b/a),0)上是单调递减的.
当a<0,b<0 时可转化为a>0,b>0的情况
该函数是奇函数,图象关于原点对称。位于第一、三象限。
当x>0时,由基本不等式可得:y ≥2√ab
当且仅当ax=b/x,即x=√(b/a)时取等号。
故其顶点坐标为(√(b/a),2√ab),图象在(0,√(b/a))上是单调递减的,在(√(b/a),+∝)上是单调递增
同理:当x<0时,由基本不等式可得:y≤-2√ab
当且仅当ax=b/x,即x=-√(b/a)时取等号。
故其顶点坐标为(-√(b/a),-2√ab),
图象在(-∝,-√(b/a))上是单调递增,
在(-√(b/a),0)上是单调递减的.
当a<0,b<0 时可转化为a>0,b>0的情况
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询