已知Rt三角形ABC中,AC=BC,角C=90度

已知Rt三角形ABC中,AC=BC,角C=90度,D为AB边的中点,角EDF=90度,角EDF绕D点旋转,它的两边分别交AC、CB(或它们的延长线)于E、F,当角EDF绕... 已知Rt三角形ABC中,AC=BC,角C=90度,D为AB边的中点,角EDF=90度,角EDF绕D点旋转,它的两边分别交AC、CB(或它们的延长线)于E、F,当角EDF绕D点旋转到DE垂直AC于E时,易证S三角形DEF+S三角形CEF=1/2S三角形ABC。只要证这个。怎么证?我后面两问都会了,第一问还不会!!! 展开
wzhq777
高粉答主

2013-09-19 · 醉心答题,欢迎关注
知道顶级答主
回答量:11.1万
采纳率:95%
帮助的人:2.2亿
展开全部
方法一:
∵CD是等腰直角三角形斜边的中线,∴∠ACD=45°=∠A,
∴AD=CD,
当DE⊥AC时,AE=CE,SΔCDE=1/2SΔACD,(实际上利用等腰三角形对称性直接可得),
同理:SΔCDF=1/2SΔBCD,
∴S四边形CEDF=1/2SΔABC。

方法二:
∵∠EDF=∠DEC=∠ACB=90°,
∴四边形DECF是矩形,
∵D为等腰直角三角形ΔABC的斜边AB中点,
∴CD平分∠ACB,∴∠ECD=45°,
∴ΔCDE是等腰直角三角形,CE=DE,
∴矩形DECF是正方形。
∵CD平分等腰ΔABC,
∴SΔADE=SΔCDE=SΔCDF=SΔBDF,
∴S正方形=1/2SΔABC。
水墨烟焓
2013-09-19
知道答主
回答量:5
采纳率:0%
帮助的人:3万
展开全部
连接CD,∴AD=CD=BD
∵DE⊥AC,
∴AE=CE=CF=BF(三线合一)
∴S△CDE=S△CDF
∴S△CDF+S△DEF=1/2S△ACD+1/2S△BCD
∴S△CEF+S△DEF=1/2S△ABC
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式