求一道关于勾股定理的数学题,数学大师进,数学高手进,急急急急急!!!!!!!!!!!!!!!!!!
展开全部
初中
两个直角三角形勾股定理
(CD²+AD²)+(CD²+BD²)=AC²+BC²
AD²+BD²+2CD²=AC²+BD²
AD²+BD²+2AD×BD=AC²+BC²
(AD+BD)²=AC²+BC²
AB²=AC²+BC²
满足勾股定理
角C为直角
高中:
CD方;=AD×BD
1=AD×BD/CD方;=(AD/CD)×(BD/CD)=ctanA×ctanB
tanA×tanB=1
A+B=π/2
C=π/2
望采纳!
两个直角三角形勾股定理
(CD²+AD²)+(CD²+BD²)=AC²+BC²
AD²+BD²+2CD²=AC²+BD²
AD²+BD²+2AD×BD=AC²+BC²
(AD+BD)²=AC²+BC²
AB²=AC²+BC²
满足勾股定理
角C为直角
高中:
CD方;=AD×BD
1=AD×BD/CD方;=(AD/CD)×(BD/CD)=ctanA×ctanB
tanA×tanB=1
A+B=π/2
C=π/2
望采纳!
追问
为什么AD²+BD²+2CD²=AC²+BD²
追答
两个直角三角形勾股定理
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∵CD^2=AD*BD;
∴CD/BD=AD/CD
又因为∠CDA=∠CDA
∴△CDA和△CDB 相似
∴∠B=∠DCA, ∠A=∠DCB
∵∠B+∠DCB=90,
∴∠DCB+∠DCA=90
∴三角形ABC是直角三角形。
∴CD/BD=AD/CD
又因为∠CDA=∠CDA
∴△CDA和△CDB 相似
∴∠B=∠DCA, ∠A=∠DCB
∵∠B+∠DCB=90,
∴∠DCB+∠DCA=90
∴三角形ABC是直角三角形。
追问
我不要相似的,还没学,要用勾股定理
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
因为三角形BCD,三角形ACD都是直角三角形 故 根据勾股定理:BC^2=BD^2+CD^2,AC^2=CD^2+AD^2,因CD^2=AD*BD,故AD*BD+BD^2=BC^2,即BD(AD+BD)=BC^2,BD*AB=BC^2; AD*BD+AD^2=AC^2, 即AD(BD+AD)=AC^2, AD;*AB=AC^2
AC^2+BC^2=AB(BD+AD)=AB^2
根据直角三角形的勾股定理,可知三角形ABC为直角三角形
AC^2+BC^2=AB(BD+AD)=AB^2
根据直角三角形的勾股定理,可知三角形ABC为直角三角形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
△BCD是直角三角形 ,有CD²=BC²-BD²
△ACD是直角三角形 , CD²=AC²-AD²
两个相加 2CD²=BC²-BD²+AC²-AD²=2AD×BD
BC²+AC²=AB²
所以△ABC是直角三角形
△ACD是直角三角形 , CD²=AC²-AD²
两个相加 2CD²=BC²-BD²+AC²-AD²=2AD×BD
BC²+AC²=AB²
所以△ABC是直角三角形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
CD/AD=BD/CD
角CDB=角CDA
所以⊿DCB∽⊿ADC
∴∠BCD=∠CDA
∠DCA=∠CBD
∠BCD+∠CDA+∠DCA+∠CBD=180
∠BCD+∠DCA=90
证毕
角CDB=角CDA
所以⊿DCB∽⊿ADC
∴∠BCD=∠CDA
∠DCA=∠CBD
∠BCD+∠CDA+∠DCA+∠CBD=180
∠BCD+∠DCA=90
证毕
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询