计算题,求解答
2个回答
展开全部
解
原式
=-[1/(10*11)+1/(11*12)+1/(12*13)+……+1/(19*20)]
=-[(1/10-1/11)+(1/11-1/12)+……+(1/19-1/20)]
=-[1/10+(1/11-1/11)+(1/12-1/12)+……+(1/19-1/19)-1/20]
=-(1/10-1/20)
=-1/20
裂项
1/n(n+1)=1/n-1/(n+1)
原式
=-[1/(10*11)+1/(11*12)+1/(12*13)+……+1/(19*20)]
=-[(1/10-1/11)+(1/11-1/12)+……+(1/19-1/20)]
=-[1/10+(1/11-1/11)+(1/12-1/12)+……+(1/19-1/19)-1/20]
=-(1/10-1/20)
=-1/20
裂项
1/n(n+1)=1/n-1/(n+1)
更多追问追答
追问
1/n(n+1)为什么=1/n-1/(n+1)?
追答
裂项啊
1/n-1/(n+1)=(n+1)/n(n+1)-n/(n+1)=(n+1-n)/n(n+1)=1/n(n+1)
∴1/n-1/(n+1)=1/n(n+1)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询