![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
若α,β是一元二次方程x^2+3x-2=0的两个根,则α^2+2α-β的值是
展开全部
解:因为α、β是方程的根,根据根与系数的关系有α+β=-3。
将α代入方程有αˆ2+3α-2=0。即αˆ2+2α=2-α。
那么αˆ2+2α-β=2-α-β
=2-(α+β)
=2-(-3)
=5
将α代入方程有αˆ2+3α-2=0。即αˆ2+2α=2-α。
那么αˆ2+2α-β=2-α-β
=2-(α+β)
=2-(-3)
=5
2013-09-21
展开全部
α是x^2+3x-2=0的根,所以α^2+3α=2,β=-3-α,所以
α^2+2α-β=5
α^2+2α-β=5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询