已知:如图,在△ABC中,BE、CF分别是AC、AB两条边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,
展开全部
证明:
∵ BE,CF分别是AC,AB两边上的高
∴∠AFC=∠AEB=90°
又∵∠BAE=∠CAF (公共角)
∴∠ABE=∠ACF (同角的余角相等)
又∵ AB=GC BD=CA ( 已知)
∴△ABD≌△ACG (SAS)
∴ AG=AD
∠BAD= ∠AGF (全等三角形的性质 )
又∵∠AGF+∠GAF=∠AFC=90°(三角形的外角性质)
∴ ∠BAD+∠GAF=90°
∴∠GAD=90°
∴ AG ⊥AD
∵ BE,CF分别是AC,AB两边上的高
∴∠AFC=∠AEB=90°
又∵∠BAE=∠CAF (公共角)
∴∠ABE=∠ACF (同角的余角相等)
又∵ AB=GC BD=CA ( 已知)
∴△ABD≌△ACG (SAS)
∴ AG=AD
∠BAD= ∠AGF (全等三角形的性质 )
又∵∠AGF+∠GAF=∠AFC=90°(三角形的外角性质)
∴ ∠BAD+∠GAF=90°
∴∠GAD=90°
∴ AG ⊥AD
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
问题是什么
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询