对面积的曲面积分疑问
假设f(x,y,z)=1,积分曲面是长方体(长方体有界)的最上面那个平面,正常做法肯定是投影到xOy平面做,我想问的是如果投影到yOz平面就是一条线段,面积为0,则积出来...
假设f(x,y,z)=1,积分曲面是长方体(长方体有界)的最上面那个平面,正常做法肯定是投影到xOy平面做,我想问的是如果投影到yOz平面就是一条线段,面积为0,则积出来就是0!但是投影到xOy平面做,答案可能不是0,请问错在哪里?求解
二重积分能不能在一条直线上积分?在直线上积分一个几何意义是体积为0,另外一个物理意义是一条直线的质量,直线质量肯定不为0的,所以我想问二重积分在一条直线上积分是否为0? 展开
二重积分能不能在一条直线上积分?在直线上积分一个几何意义是体积为0,另外一个物理意义是一条直线的质量,直线质量肯定不为0的,所以我想问二重积分在一条直线上积分是否为0? 展开
2个回答
展开全部
对面积的曲面积分在计算时还有一项dS需要计算,
dS=√[1+(∂z/∂x)²+(∂z/∂y)²]dxdy
这是投影到XOY面的计算结果,里面有两个偏导数需要计算,因此在计算之前需要将曲面方程写为z=z(x,y)的形式,然后才能求偏导计算。
现在回到你的问题,若是对长方形的上面那个面积分,这个面的方程为:z=常数,也就是说,这个曲面方程只能写成z=z(x,y)的形式,因此,只能往XOY面投影。若想往YOZ面投影,需要将曲面写为x=x(y,z)的形式,这个平面无法写出这个形式。
dS=√[1+(∂z/∂x)²+(∂z/∂y)²]dxdy
这是投影到XOY面的计算结果,里面有两个偏导数需要计算,因此在计算之前需要将曲面方程写为z=z(x,y)的形式,然后才能求偏导计算。
现在回到你的问题,若是对长方形的上面那个面积分,这个面的方程为:z=常数,也就是说,这个曲面方程只能写成z=z(x,y)的形式,因此,只能往XOY面投影。若想往YOZ面投影,需要将曲面写为x=x(y,z)的形式,这个平面无法写出这个形式。
更多追问追答
追问
这个平面虽然无法写出这个形式,但是因为投影到yOz平面就是一条线段,面积为0,则积出来应该就是0啊
追答
写不出这个形式就无法套公式
dS=√[1+(∂x/∂y)²+(∂x/∂z)²]dydz
这是公式中要用到的,但是没法计算∂x/∂y和∂x/∂z
图为信息科技(深圳)有限公司
2021-01-25 广告
2021-01-25 广告
边缘计算方案可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。...
点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询