2013-09-22
展开全部
第一章:三角形的初步认识
主要性质:
(1) 三角形任何两边的和大于第三边。
(2) 三角形三个内角的和等于180°。三角形的一个外角等于的它不相邻的两个内角的和。
(3) 全等三角形的对应边相等,对应角相等。
(4) 有三边对应相等的两个三角形全等(简写成“边边边”或“SSS”);有一个角和夹这个角的两边对应相等的两个三角形全等(简写成“边角边”或“SAS”);有两个角和这两个角的夹边对应相等的两个三角形全等(简写成“角边角”或“ASA”);有两个角和其中一个角的对边对应相等的两个三角形全等(简写成“角角边”或“AAS”)
(5) 线段垂直平分线上的点到线段两端点的距离相等。角平分线上的点到角两边的距离相等。
第二章:图形和变换
主要性质
(1) 对称轴垂直平分连结两个对称点之间的线段,轴对称变换不改变图形的形状和大小。
(2) 平移变换不改变图形的形状、大小和方向,并且连接对应点的线段平行而且相等。
(3) 旋转变换不改变图形的大小和形状,并且对应点到旋转中心的距离都相等,对应点与旋转中心连线所成的角度都等于旋转的角度。
(4) 相似变换不改变图形中每一个角的大小;图形中的每条线段都扩大(或缩小)相同的倍数。
第三章:事件的可能性
(1)在一定条件下必然发生的事件叫做必然事件;在一定条件下必然不会发生的事件叫做不可能事件;在一定条件下,可能发生也可能不发生的的事件称为不确定事件(或随机事件)
(2)在数学上,事件发生的可能性的大小也称为事件发生的概率.必然事件发生的概率为1或100%,不可能事件发生的概率为0,若用P表示不确定事件发生的概率,则0<P<1
第四章:
含有两个未知数,且含有未知数的项的次数都是一次的方程叫做二元一次方程,使二元一次方程两边的值相等的一对未知数的值,叫做二元一次方程的一个解。
由两个一次方程组成,且含有两个未知数的方程组,叫做二元一次方程组。同时满足二元一次方程组中各个方程的解,叫做二元一次方程组的解。
基本思路
二元一次方程 消元 一元一次方程
应用方程组解决实际问题的步骤
理解问题(审题,搞清已知和未知,分析数量关系)
制订计划(考虑如何根据等量关系设元,列出方程组)
执行计划(列出方程组并求解,得出答案)
回顾(检查和反思解题过秤,检验答案的正确性以及是否符合题意)
主要方法和技能
用代入法和加减法解二元一次方程组
应用二元一次方程组解决简单的实际问题
第五章
整数指数幂及其运算的基本法则
整式的乘法法则
单项式与单项式相乘,把它们的系数、同底数幂分别相乘,其余字母连同它的指数不变,作为积的因式
单项式和多项式相乘,就是用单项式去乘多项式的每项,再把所得的积相加。
多项式和多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加
整式的除法法则
单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。
第六章
1.分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变。即
其中M是不等于零的整式。
2.分式乘以分式,用分子的积做积的分子,分母的积做积的分母;分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
3.同分母的分式相加减,把分子相加减,分母不变。
4.同分母不相同的几个分式,化成分母相同的分式,叫做通分。经过通分,异分母分式的加减就转化成同分母分式的加减。
5.解分式方程必须验根.把求得的根代入原方程,或代入原方程两边所乘的公分母,使分式为零的根,叫做增根,增根必须舍去。七年级数学下期复习提纲:一、 概念知识1、 单项式:数字与字母的积,叫做单项式。2、 多项式:几个单项式的和,叫做多项式。3、 整式:单项式和多项式统称整式。4、 单项式的次数:单项式中所有字母的指数的和叫单项式的次数。5、 多项式的次数:多项式中次数最高的项的次数,就是这个多项式的次数。6、 余角:两个角的和为90度,这两个角叫做互为余角。7、 补角:两个角的和为180度,这两个角叫做互为补角。8、 对顶角:两个角有一个公共顶点,其中一个角的两边是另一个角两边的反向延长线。这两个角就是对顶角。9、 同位角:在“三线八角”中,位置相同的角,就是同位角。10、内错角:在“三线八角”中,夹在两直线内,位置错开的角,就是内错角。11、同旁内角:在“三线八角”中,夹在两直线内,在第三条直线同旁的角,就是同旁内角。12、有效数字:一个近似数,从左边第一个不为0的数开始,到精确的那位止,所有的数字都是有效数字。13、概率:一个事件发生的可能性的大小,就是这个事件发生的概率。14、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。15、三角形的角平分线:在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。16、三角形的中线:在三角形中连接一个顶点与它的对边中点的线段,叫做这个三角形的中线。17、三角形的高线:从一个三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。18、全等图形:两个能够重合的图形称为全等图形。19、变量:变化的数量,就叫变量。20、自变量:在变化的量中主动发生变化的,变叫自变量。21、因变量:随着自变量变化而被动发生变化的量,叫因变量。22、轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形。23、对称轴:轴对称图形中对折的直线叫做对称轴。24、垂直平分线:线段是轴对称图形,它的一条对称轴垂直于这条线段并且平分它,这样的直线叫做这条线段的垂直平分线。(简称中垂线)二、 计算能力(A) 整式的计算。1、 整式的加减去括号,合并同类项!2、 幂运算(七个公式)① 同底数幂相乘:底数不变,指数相加。 ②幂的乘方:底数不变,指数相乘。③积的乘方:等于每个因数乘方的积。 ④同指数幂相乘:指数不变,底数相乘。
主要性质:
(1) 三角形任何两边的和大于第三边。
(2) 三角形三个内角的和等于180°。三角形的一个外角等于的它不相邻的两个内角的和。
(3) 全等三角形的对应边相等,对应角相等。
(4) 有三边对应相等的两个三角形全等(简写成“边边边”或“SSS”);有一个角和夹这个角的两边对应相等的两个三角形全等(简写成“边角边”或“SAS”);有两个角和这两个角的夹边对应相等的两个三角形全等(简写成“角边角”或“ASA”);有两个角和其中一个角的对边对应相等的两个三角形全等(简写成“角角边”或“AAS”)
(5) 线段垂直平分线上的点到线段两端点的距离相等。角平分线上的点到角两边的距离相等。
第二章:图形和变换
主要性质
(1) 对称轴垂直平分连结两个对称点之间的线段,轴对称变换不改变图形的形状和大小。
(2) 平移变换不改变图形的形状、大小和方向,并且连接对应点的线段平行而且相等。
(3) 旋转变换不改变图形的大小和形状,并且对应点到旋转中心的距离都相等,对应点与旋转中心连线所成的角度都等于旋转的角度。
(4) 相似变换不改变图形中每一个角的大小;图形中的每条线段都扩大(或缩小)相同的倍数。
第三章:事件的可能性
(1)在一定条件下必然发生的事件叫做必然事件;在一定条件下必然不会发生的事件叫做不可能事件;在一定条件下,可能发生也可能不发生的的事件称为不确定事件(或随机事件)
(2)在数学上,事件发生的可能性的大小也称为事件发生的概率.必然事件发生的概率为1或100%,不可能事件发生的概率为0,若用P表示不确定事件发生的概率,则0<P<1
第四章:
含有两个未知数,且含有未知数的项的次数都是一次的方程叫做二元一次方程,使二元一次方程两边的值相等的一对未知数的值,叫做二元一次方程的一个解。
由两个一次方程组成,且含有两个未知数的方程组,叫做二元一次方程组。同时满足二元一次方程组中各个方程的解,叫做二元一次方程组的解。
基本思路
二元一次方程 消元 一元一次方程
应用方程组解决实际问题的步骤
理解问题(审题,搞清已知和未知,分析数量关系)
制订计划(考虑如何根据等量关系设元,列出方程组)
执行计划(列出方程组并求解,得出答案)
回顾(检查和反思解题过秤,检验答案的正确性以及是否符合题意)
主要方法和技能
用代入法和加减法解二元一次方程组
应用二元一次方程组解决简单的实际问题
第五章
整数指数幂及其运算的基本法则
整式的乘法法则
单项式与单项式相乘,把它们的系数、同底数幂分别相乘,其余字母连同它的指数不变,作为积的因式
单项式和多项式相乘,就是用单项式去乘多项式的每项,再把所得的积相加。
多项式和多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加
整式的除法法则
单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。
第六章
1.分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变。即
其中M是不等于零的整式。
2.分式乘以分式,用分子的积做积的分子,分母的积做积的分母;分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
3.同分母的分式相加减,把分子相加减,分母不变。
4.同分母不相同的几个分式,化成分母相同的分式,叫做通分。经过通分,异分母分式的加减就转化成同分母分式的加减。
5.解分式方程必须验根.把求得的根代入原方程,或代入原方程两边所乘的公分母,使分式为零的根,叫做增根,增根必须舍去。七年级数学下期复习提纲:一、 概念知识1、 单项式:数字与字母的积,叫做单项式。2、 多项式:几个单项式的和,叫做多项式。3、 整式:单项式和多项式统称整式。4、 单项式的次数:单项式中所有字母的指数的和叫单项式的次数。5、 多项式的次数:多项式中次数最高的项的次数,就是这个多项式的次数。6、 余角:两个角的和为90度,这两个角叫做互为余角。7、 补角:两个角的和为180度,这两个角叫做互为补角。8、 对顶角:两个角有一个公共顶点,其中一个角的两边是另一个角两边的反向延长线。这两个角就是对顶角。9、 同位角:在“三线八角”中,位置相同的角,就是同位角。10、内错角:在“三线八角”中,夹在两直线内,位置错开的角,就是内错角。11、同旁内角:在“三线八角”中,夹在两直线内,在第三条直线同旁的角,就是同旁内角。12、有效数字:一个近似数,从左边第一个不为0的数开始,到精确的那位止,所有的数字都是有效数字。13、概率:一个事件发生的可能性的大小,就是这个事件发生的概率。14、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。15、三角形的角平分线:在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。16、三角形的中线:在三角形中连接一个顶点与它的对边中点的线段,叫做这个三角形的中线。17、三角形的高线:从一个三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。18、全等图形:两个能够重合的图形称为全等图形。19、变量:变化的数量,就叫变量。20、自变量:在变化的量中主动发生变化的,变叫自变量。21、因变量:随着自变量变化而被动发生变化的量,叫因变量。22、轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形。23、对称轴:轴对称图形中对折的直线叫做对称轴。24、垂直平分线:线段是轴对称图形,它的一条对称轴垂直于这条线段并且平分它,这样的直线叫做这条线段的垂直平分线。(简称中垂线)二、 计算能力(A) 整式的计算。1、 整式的加减去括号,合并同类项!2、 幂运算(七个公式)① 同底数幂相乘:底数不变,指数相加。 ②幂的乘方:底数不变,指数相乘。③积的乘方:等于每个因数乘方的积。 ④同指数幂相乘:指数不变,底数相乘。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |