函数y=x√(1-x²)的最大值为( )。 求详解!
3个回答
展开全部
y'=√(1-x²)-x²/√(1-x²)=(1-2x²)/√(1-x²)
x²=1/2为极值点
最大值:y(√2/2)=1/2
x²=1/2为极值点
最大值:y(√2/2)=1/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
由1-x²可得出x的定义域为-1<=x<=1
那么,可以设x=cosa(0<= a <= 180)
所以
y=x√(1-x²)
=cosa√(1-cos²a)
=cosasina
= 1/2sin2a
<=1/2
解得原式的最大值为1/2
那么,可以设x=cosa(0<= a <= 180)
所以
y=x√(1-x²)
=cosa√(1-cos²a)
=cosasina
= 1/2sin2a
<=1/2
解得原式的最大值为1/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询