计算行列式|x -1 0 ...0 0| |0 x -1 ...0 0| |0 0 0 ...x -1| |a0 a1 a2 ...an-1 an-2+x|

nsjiang1
2013-09-23 · TA获得超过1.3万个赞
知道大有可为答主
回答量:8735
采纳率:94%
帮助的人:3712万
展开全部
|x -1 0 ...0 0|
|0 x -1 ...0 0|
|0 0 0 .. .x -1|
|a0 a1 a2 ...an-2 an-1+x|
按1列展开=x乘以下面的行列式
|x -1 0 ..... 0 0|
|0 x -1 ..........0 0|
|0 0 0 .. ........x -1|
|a1 a2 a3 ... an-2 an-1+x|
加上(-1)^(n+1)a0乘以下面的行列式:
|x -1 0 ..... 0 0|
|0 x -1 ..........0 0|
..........................................
|0 0 0 .. ........x -1|
这个行列式的值=(-1)^(n-1)
记原行列式为An,于是有递推公式
An=a0+xA(n-1)
=a0+x(a1+xA(n-2))
=a0+ a1x+x^2(a2+xA(n-3))
=.......................................
=a0+ a1x+a2x^2+...+a(n-1)x^(n-1)
手机用户81202
2013-09-23 · 贡献了超过336个回答
知道答主
回答量:336
采纳率:0%
帮助的人:95.3万
展开全部
解: 作变换c1+xc2+x^2c3+...+x^ncn+1行列式等于 0                     -1  0 ... 0    0 0                      x -1 ... 0    0   ......      ......        ......0                      0  0 ... x   -1a0+a1x+a2x^2+...+anx^n a1 a2 .. an-1 an按第1列展开8 行列式 = (a0+a1x+a2x^2+...+anx^n)*(-1)^(n+1+1)*-1  0 ... 0    0  x -1 ... 0    0        ......     0  0 ... x   -1 = (a0+a1x+a2x^2+...+anx^n)*(-1)^(n+1+1)*(-1)^n= a0+a1x+a2x^2+...+anx^n.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式