求世界数学著名定理
只要是数学定理即可,最好可用初中数学证出来,类似托勒密定理,蝴蝶定理等等。只要定理,不要证明!说得好给加分哦!...
只要是数学定理即可,最好可用初中数学证出来,类似托勒密定理,蝴蝶定理等等。只要定理,不要证明!说得好给加分哦!
展开
2013-09-23
展开全部
托勒密定理:四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。
蝴蝶定理:P是圆O的弦AB的中点,过P点引圆O的两弦CD、EF,连结DE交AB于M,连结CF交AB于N,则有MP=NP。
帕普斯定理:设六边形ABCDEF的顶点交替分布在两条直线a和b上,那么它的三双对边所在直线的交点X、Y、Z在一直线上。
高斯线定理:四边形ABCD中,直线AB与直线CD交于E,直线BC与直线AD交于F,M、N、Q分别为AC、BD、EF的中点,则有M、N、O共线。
莫勒定理:三角形三个角的三等分线共有6条,每相邻的(不在同一个角的)两条三等分线的交点,是一个等边三角形的顶点。
拿破仑定理:以三角形各边为边分别向外侧作等边三角形则他们的中心构成一个等边三角形。
帕斯卡定理:若一个六边形内接于一条圆锥曲线,则这个六边形的三双对边的交点在一条直线上。
布利安双定理:设一六角形外切于一条圆锥曲线,那么它的三双对顶点的连线共点。
梅尼劳斯定理:如果一直线与三角形ABC的边BC、CA、AB分别交于L、M、N,则有:(AN/NB)*(BL/LC)*(CM/MA)=1 (考虑线段方向,则等式右边为-1)。
它的逆定理:若有三点L、M、N分别在三角形ABC的边BC、CA、AB或其延长线上(至少有一点在延长线上),且满足(AN/NB)*(BL/LC)*(CM/MA)=1,则L、M、N三点共线。
塞瓦定理:设O是三角形ABC内任意一点, AO、BO、CO分别交对边于D、E、F,则(BD/DC)*(CE/EA)*(AF/FB)=1。
它的逆定理:在三角形ABC三边所在直线BC、CA、AB上各取一点D、E、F,若有(BD/DC)*(CE/EA)*(AF/FB)=1,则AD、BE、CE平行或共点。
斯特瓦尔特定理:在三角形ABC中,若D是BC上一点,且BD=p,DC=q,AB=c,AC=b,则AD^2=[(b*b*p+c*c*q)/(p+q)]-pq。
泰博定理:取平行四边形的边为正方形的边,作四个正方形(同时在平行四边形内或外皆可)。正方形的中心点所组成的四边形为正方形;取正方形的两条邻边为三角形的边,作两个等边三角形(同时在正方形内或外皆可)。这两个三角形不在正方形边上的顶点,和正方形四个顶点中唯一一个不是三角形顶点的顶点,组成一等边三角形;给定任意三角形ABC,BC上任意一点M,作两个圆形,均与AM、BC、外接圆相切,该两圆的圆心和三角形内接圆心共线。
凡·奥贝尔定理:给定一个四边形,在其边外侧构造一个正方形。将相对的正方形的中心连起,得出两条线段。线段的长度相等且垂直(凡·奥贝尔定理适用于凹四边形)。
西姆松定理:从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。
蝴蝶定理:P是圆O的弦AB的中点,过P点引圆O的两弦CD、EF,连结DE交AB于M,连结CF交AB于N,则有MP=NP。
帕普斯定理:设六边形ABCDEF的顶点交替分布在两条直线a和b上,那么它的三双对边所在直线的交点X、Y、Z在一直线上。
高斯线定理:四边形ABCD中,直线AB与直线CD交于E,直线BC与直线AD交于F,M、N、Q分别为AC、BD、EF的中点,则有M、N、O共线。
莫勒定理:三角形三个角的三等分线共有6条,每相邻的(不在同一个角的)两条三等分线的交点,是一个等边三角形的顶点。
拿破仑定理:以三角形各边为边分别向外侧作等边三角形则他们的中心构成一个等边三角形。
帕斯卡定理:若一个六边形内接于一条圆锥曲线,则这个六边形的三双对边的交点在一条直线上。
布利安双定理:设一六角形外切于一条圆锥曲线,那么它的三双对顶点的连线共点。
梅尼劳斯定理:如果一直线与三角形ABC的边BC、CA、AB分别交于L、M、N,则有:(AN/NB)*(BL/LC)*(CM/MA)=1 (考虑线段方向,则等式右边为-1)。
它的逆定理:若有三点L、M、N分别在三角形ABC的边BC、CA、AB或其延长线上(至少有一点在延长线上),且满足(AN/NB)*(BL/LC)*(CM/MA)=1,则L、M、N三点共线。
塞瓦定理:设O是三角形ABC内任意一点, AO、BO、CO分别交对边于D、E、F,则(BD/DC)*(CE/EA)*(AF/FB)=1。
它的逆定理:在三角形ABC三边所在直线BC、CA、AB上各取一点D、E、F,若有(BD/DC)*(CE/EA)*(AF/FB)=1,则AD、BE、CE平行或共点。
斯特瓦尔特定理:在三角形ABC中,若D是BC上一点,且BD=p,DC=q,AB=c,AC=b,则AD^2=[(b*b*p+c*c*q)/(p+q)]-pq。
泰博定理:取平行四边形的边为正方形的边,作四个正方形(同时在平行四边形内或外皆可)。正方形的中心点所组成的四边形为正方形;取正方形的两条邻边为三角形的边,作两个等边三角形(同时在正方形内或外皆可)。这两个三角形不在正方形边上的顶点,和正方形四个顶点中唯一一个不是三角形顶点的顶点,组成一等边三角形;给定任意三角形ABC,BC上任意一点M,作两个圆形,均与AM、BC、外接圆相切,该两圆的圆心和三角形内接圆心共线。
凡·奥贝尔定理:给定一个四边形,在其边外侧构造一个正方形。将相对的正方形的中心连起,得出两条线段。线段的长度相等且垂直(凡·奥贝尔定理适用于凹四边形)。
西姆松定理:从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。
2013-09-23
展开全部
最简单的就是“毕达哥拉斯定理”,也就是中国人讲的“勾股定理”。这个相信你很清楚了,我就不再多说了。还有几个我在下面一一列出。1,三角函数里面的正弦,余弦定理。正弦定理:a/sinα=b/sinβ=c/sinγ,a,b,c为三角形的三边,α,β,γ为其对应的角。余弦定理:c的平方=根号下(a平方+b平方-2abcosγ)2,韦达定理:这是一元二次方程里面的一个非常重要的公式,你们课本里面应该有。其他的有很多定理我想你们初中应该用不上,比如高斯定理啊,斯托克斯定理啊,梅捏劳斯定理等等,具体的你可以去Google上面去查一下
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
垂径定理
垂直于玄的直径平分玄,并且平分该玄所对弧!
垂直于玄的直径平分玄,并且平分该玄所对弧!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐于2017-11-26
展开全部
阿贝尔-鲁菲尼定理
阿蒂亚-辛格指标定理
阿贝尔定理
安达尔定理
阿贝尔二项式定理
阿贝尔曲线定理
艾森斯坦定理
奥尔定理
阿基米德中点定理
波尔查诺-魏尔施特拉斯定理
巴拿赫-塔斯基悖论
伯特兰-切比雪夫定理
贝亚蒂定理
贝叶斯定理
博特周期性定理
闭图像定理
伯恩斯坦定理
不动点定理
布列安桑定理
布朗定理
贝祖定理
博苏克-乌拉姆定理
垂径定理
陈氏定理
采样定理
迪尼定理
等周定理
代数基本定理
多项式余数定理
大数定律
狄利克雷定理
棣美弗定理
棣美弗-拉普拉斯定理
笛卡儿定理
多项式定理
笛沙格定理
二项式定理
富比尼定理
范德瓦尔登定理
费马大定理
法图引理
费马平方和定理
法伊特-汤普森定理
弗罗贝尼乌斯定理
费马小定理
凡·奥贝尔定理
芬斯勒-哈德维格尔定理
反函数定理
费马多边形数定理
格林公式
鸽巢原理
吉洪诺夫定理
高斯-马尔可夫定理
谷山-志村定理
哥德尔完备性定理
惯性定理
哥德尔不完备定理
广义正交定理
古尔丁定理
高斯散度定理
古斯塔夫森定理
共轭复根定理
高斯-卢卡斯定理
哥德巴赫-欧拉定理
勾股定理
格尔丰德-施奈德定理
赫尔不兰特定理
黑林格-特普利茨定理
华勒斯-波埃伊-格维也纳定理
霍普夫-里诺定理
海涅-波莱尔定理
亥姆霍兹定理
赫尔德定理
蝴蝶定理
绝妙定理
介值定理
积分第一中值定理
紧致性定理
积分第二中值定理
夹挤定理
卷积定理
极值定理
基尔霍夫定理
角平分线定理
柯西定理
克莱尼不动点定理
康托尔定理
柯西中值定理
可靠性定理
克莱姆法则
柯西-利普希茨定理
戡根定理
康托尔-伯恩斯坦-施罗德定理
凯莱-哈密顿定理
克纳斯特-塔斯基定理
卡迈克尔定理
柯西积分定理
克罗内克尔定理
克罗内克尔-韦伯定理
卡诺定理
零一律
卢辛定理
勒贝格控制收敛定理
勒文海姆-斯科伦定理
罗尔定理
拉格朗日定理 (群论)
拉格朗日中值定理
拉姆齐定理
拉克斯-米尔格拉姆定理
黎曼映射定理
吕利耶定理
勒让德定理
拉格朗日定理 (数论)
勒贝格微分定理
雷维收敛定理
刘维尔定理
六指数定理
黎曼级数定理
林德曼-魏尔斯特拉斯定理
毛球定理
莫雷角三分线定理
迈尔斯定理
米迪定理
Myhill-Nerode定理
马勒定理
闵可夫斯基定理
莫尔-马歇罗尼定理
密克定理
梅涅劳斯定理
莫雷拉定理
纳什嵌入定理
拿破仑定理
欧拉定理 (数论)
欧拉旋转定理
欧几里德定理
欧拉定理 (几何学)
庞加莱-霍普夫定理
皮克定理
谱定理
婆罗摩笈多定理
帕斯卡定理
帕普斯定理
普罗斯定理
皮卡定理
切消定理
齐肯多夫定理
曲线基本定理
四色定理
算术基本定理
斯坦纳-雷姆斯定理
四顶点定理
四平方和定理
斯托克斯定理
素数定理
斯托尔兹-切萨罗定理
Stone布尔代数表示定理
Sun-Ni定理
斯图尔特定理
塞瓦定理
射影定理
泰勒斯定理
同构基本定理
泰勒中值定理
泰勒公式
Turán定理
泰博定理
图厄定理
托勒密定理
Wolstenholme定理
无限猴子定理
威尔逊定理
魏尔施特拉斯逼近定理
微积分基本定理
韦达定理
维维亚尼定理
五色定理
韦伯定理
西罗定理
西姆松定理
西尔维斯特-加莱定理
线性代数基本定理
线性同余定理
有噪信道编码定理
有限简单群分类
演绎定理
圆幂定理
友谊定理
因式定理
隐函数定理
有理根定理
余弦定理
中国剩余定理
证明所有素数的倒数之和发散
秩-零度定理
祖暅原理
中心极限定理
中值定理
詹姆斯定理
最大流最小割定理
主轴定理
中线定理
正切定理
正弦定理
阿蒂亚-辛格指标定理
阿贝尔定理
安达尔定理
阿贝尔二项式定理
阿贝尔曲线定理
艾森斯坦定理
奥尔定理
阿基米德中点定理
波尔查诺-魏尔施特拉斯定理
巴拿赫-塔斯基悖论
伯特兰-切比雪夫定理
贝亚蒂定理
贝叶斯定理
博特周期性定理
闭图像定理
伯恩斯坦定理
不动点定理
布列安桑定理
布朗定理
贝祖定理
博苏克-乌拉姆定理
垂径定理
陈氏定理
采样定理
迪尼定理
等周定理
代数基本定理
多项式余数定理
大数定律
狄利克雷定理
棣美弗定理
棣美弗-拉普拉斯定理
笛卡儿定理
多项式定理
笛沙格定理
二项式定理
富比尼定理
范德瓦尔登定理
费马大定理
法图引理
费马平方和定理
法伊特-汤普森定理
弗罗贝尼乌斯定理
费马小定理
凡·奥贝尔定理
芬斯勒-哈德维格尔定理
反函数定理
费马多边形数定理
格林公式
鸽巢原理
吉洪诺夫定理
高斯-马尔可夫定理
谷山-志村定理
哥德尔完备性定理
惯性定理
哥德尔不完备定理
广义正交定理
古尔丁定理
高斯散度定理
古斯塔夫森定理
共轭复根定理
高斯-卢卡斯定理
哥德巴赫-欧拉定理
勾股定理
格尔丰德-施奈德定理
赫尔不兰特定理
黑林格-特普利茨定理
华勒斯-波埃伊-格维也纳定理
霍普夫-里诺定理
海涅-波莱尔定理
亥姆霍兹定理
赫尔德定理
蝴蝶定理
绝妙定理
介值定理
积分第一中值定理
紧致性定理
积分第二中值定理
夹挤定理
卷积定理
极值定理
基尔霍夫定理
角平分线定理
柯西定理
克莱尼不动点定理
康托尔定理
柯西中值定理
可靠性定理
克莱姆法则
柯西-利普希茨定理
戡根定理
康托尔-伯恩斯坦-施罗德定理
凯莱-哈密顿定理
克纳斯特-塔斯基定理
卡迈克尔定理
柯西积分定理
克罗内克尔定理
克罗内克尔-韦伯定理
卡诺定理
零一律
卢辛定理
勒贝格控制收敛定理
勒文海姆-斯科伦定理
罗尔定理
拉格朗日定理 (群论)
拉格朗日中值定理
拉姆齐定理
拉克斯-米尔格拉姆定理
黎曼映射定理
吕利耶定理
勒让德定理
拉格朗日定理 (数论)
勒贝格微分定理
雷维收敛定理
刘维尔定理
六指数定理
黎曼级数定理
林德曼-魏尔斯特拉斯定理
毛球定理
莫雷角三分线定理
迈尔斯定理
米迪定理
Myhill-Nerode定理
马勒定理
闵可夫斯基定理
莫尔-马歇罗尼定理
密克定理
梅涅劳斯定理
莫雷拉定理
纳什嵌入定理
拿破仑定理
欧拉定理 (数论)
欧拉旋转定理
欧几里德定理
欧拉定理 (几何学)
庞加莱-霍普夫定理
皮克定理
谱定理
婆罗摩笈多定理
帕斯卡定理
帕普斯定理
普罗斯定理
皮卡定理
切消定理
齐肯多夫定理
曲线基本定理
四色定理
算术基本定理
斯坦纳-雷姆斯定理
四顶点定理
四平方和定理
斯托克斯定理
素数定理
斯托尔兹-切萨罗定理
Stone布尔代数表示定理
Sun-Ni定理
斯图尔特定理
塞瓦定理
射影定理
泰勒斯定理
同构基本定理
泰勒中值定理
泰勒公式
Turán定理
泰博定理
图厄定理
托勒密定理
Wolstenholme定理
无限猴子定理
威尔逊定理
魏尔施特拉斯逼近定理
微积分基本定理
韦达定理
维维亚尼定理
五色定理
韦伯定理
西罗定理
西姆松定理
西尔维斯特-加莱定理
线性代数基本定理
线性同余定理
有噪信道编码定理
有限简单群分类
演绎定理
圆幂定理
友谊定理
因式定理
隐函数定理
有理根定理
余弦定理
中国剩余定理
证明所有素数的倒数之和发散
秩-零度定理
祖暅原理
中心极限定理
中值定理
詹姆斯定理
最大流最小割定理
主轴定理
中线定理
正切定理
正弦定理
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询