如图,△ABC是直角三角形,∠ACB=90°,CD⊥AB于D,E是AC的中点,ED的延长线与CB的延长线交与点F

(1)求证:FD²=FB·FC(2)若G是BC的中点,连接GD,GD与EF垂直吗?并说明理由... (1)求证:FD²=FB·FC
(2)若G是BC的中点,连接GD,GD与EF垂直吗?并说明理由
展开
qsmm
2013-09-24 · TA获得超过267万个赞
知道顶级答主
回答量:28.3万
采纳率:90%
帮助的人:12.6亿
展开全部

考点:相似三角形的判定与性质;直角三角形斜边上的中线.

专题:综合题.

分析:(1)要求证:FD2=FB•FC,只要证明△FBD∽△FDC,从而转化为证明∠FDC=∠FBD;
(2)要证DG⊥EF,只要证明∠BDG+∠BDF=90°,转化为证明∴∠CDG=∠DCG即可.

 

(1)证明:

∵E是Rt△ACD斜边中点,
∴DE=EA,
∴∠A=∠ADE,
∵∠BDF=∠ADE,
∴∠BDF=∠A,
∵∠FDC=∠CDB+∠BDF=90°+∠BDF,∠FBD=∠ACB+∠A=90°+∠A,
∴∠FDC=∠FBD,
∵∠F是公共角,
∴△FBD∽△FDC.
∴FB/FD=FD/FC
∴FD2=FB•FC.

(2)GD⊥EF.
理由如下:
∵DG是Rt△CDB斜边上的中线,
∴DG=GC.
∴∠CDG=∠DCG.
由(1)得∵△FBD∽△FDC,
∴∠DCG=∠BDF,
∴∠CDG=∠BDF.
∵∠CDG+∠BDG=90°,
∴∠BDG+∠BDF=90°.
∴DG⊥EF.

 

点评:证明线段的积相等可以转化为证明三角形相似,证明两直线垂直转化为证明形成的角是直角.

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式