若函数f(x)=√(x²+1)-ax(a>0)在区间[1,+∞)上单调递增,求a的取值范围

各位数学大神快来啊... 各位数学大神快来啊 展开
yuyou403
2013-09-23 · TA获得超过6.4万个赞
知道顶级答主
回答量:2.2万
采纳率:95%
帮助的人:1亿
展开全部
答:
f(x)=√(x^2+1)-ax(a>0)
显然,定义域为实数范围R
求导:
f'(x)=2x/[2√(x^2+1)]-a
=x/√(x^2+1)-a
f(x)在x>=1时是单调递增函数
所以:f'(x)=x/√(x^2+1)-a>=0在x>=1时恒成立
a<=x/√(x^2+1)
=√[x^2/(x^2+1)]
=√[1-1/(x^2+1)]
x>=1,x^2+1>=2
-1/2<=-1/(x^2+1)<0
1/2<=1-1/(x^2+1)<1
所以:a<=√(1/2)<=√[1-1/(x^2+1)]
所以:0<a<=√2/2
pppp53335
2013-09-23 · TA获得超过3675个赞
知道大有可为答主
回答量:3084
采纳率:0%
帮助的人:1404万
展开全部
解:
f(x)=根号(x^2+1) - ax
f'(x)=1/2根号(x^2+1) - a=[1-2a根号(x^2+1)]/2根号(x^2+1)
令f'(x)>=0

1-2a根号(x^2+1)>=0
1>=2a根号(x^2+1)
1>=(4a^2)(x^2+1)
4a^2x^2+4a^2-1<=0
x^2<=1/4a^2 -1
-根号1/4a^2 -1<=x<=根号1/4a^2 -1时递增
所以根号1/4a^2 -1<=1
1/4a^2<=2
a∈(负无穷,-1/根号8]∪[1/根号8,正无穷)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式