我想要椭圆、双曲线、抛物线的通径公式,及求证过程

 我来答
匿名用户
2013-09-25
展开全部
准线:椭圆和双曲线:x=(a^2)/c
抛物线:x=p/2 (以y^2=2px为例)

焦半径:
椭圆和双曲线:a±ex (e为离心率。x为该点的横坐标,小于0取加号,大于0取减号)
抛物线:p/2+x (以y^2=2px为例)

以上椭圆和双曲线以焦点在x轴上为例。

弦长公式:设弦所在直线的斜率为k,则弦长=根号[(1+k^2)*(x1-x2)^2]=根号[(1+k^2)*((x1+x2)^2-4*x1*x2)] 用直线的方程与圆锥曲线的方程联立,消去y即得到关于x的一元二次方程,x1,x2为方程的两根,用韦达定理即可知x1+x2和x1*x2,再代入公式即可求得弦长。

抛物线通径=2p

抛物线焦点弦长=x1+x2+p 用焦点弦的方程与圆锥曲线的方程联立,消去y即得到关于x的一元二次方程,x1,x2为方程的两根
东莞大凡
2024-11-14 广告
标定板认准大凡光学科技,专业生产研发厂家,专业从事光学影像测量仪,光学投影测量仪.光学三维测量仪,光学二维测量仪,光学二维测量仪,光学三维测量仪,光学二维测量仪.的研发生产销售。东莞市大凡光学科技有限公司创立于 2018 年,公司总部坐落于... 点击进入详情页
本回答由东莞大凡提供
匿名用户
推荐于2019-02-20
展开全部
 圆锥曲线包括椭圆,双曲线,抛物线
  1. 椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。即:{P| |PF1|+|PF2|=2a, (2a>|F1F2|)}。
  2. 双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。即{P|||PF1|-|PF2||=2a, (2a<|F1F2|)}。
  3. 抛物线:到一个定点和一条定直线的距离相等的动点轨迹叫做抛物线。
  4. 圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。
  ·圆锥曲线由来:圆,椭圆,双曲线,抛物线同属于圆锥曲线。早在两千多年前,古希腊数学家对它们已经很熟悉了。古希腊数学家阿波罗尼采用平面切割圆锥的方法来研究这几种曲线。用垂直与锥轴的平面去截圆锥,得到的是圆;把平面渐渐倾斜,得到椭圆;当平面和圆锥的一条母线平行时,得到抛物线;当平面再倾斜一些就可以得到双曲线。阿波罗尼曾把椭圆叫“亏曲线”,把双曲线叫做“超曲线”,把抛物线叫做“齐曲线”。
  ·圆锥曲线的参数方程和直角坐标方程:
  1)椭圆
  参数方程:x=X+acosθ y=Y+bsinθ (θ为参数 )
  直角坐标(中心为原点):x^2/a^2 + y^2/b^2 = 1
  2)双曲线
  参数方程:x=X+asecθ y=Y+btanθ (θ为参数 )
  直角坐标(中心为原点):x^2/a^2 - y^2/b^2 = 1 (开口方向为x轴) y^2/a^2 - x^2/b^2 = 1 (开口方向为y轴)
  3)抛物线
  参数方程:x=2pt^2 y=2pt (t为参数)
  直角坐标:y=ax^2+bx+c (开口方向为y轴, a<>0 ) x=ay^2+by+c (开口方向为x轴, a<>0 )
  圆锥曲线(二次非圆曲线)的统一极坐标方程为
  ρ=ep/(1-e×cosθ)
  其中e表示离心率,p为焦点到准线的距离。
  焦点到最近的准线的距离等于ex±a
  。圆锥曲线的焦半径(焦点在x轴上,F1 F2为左右焦点,P(x,y),长半轴长为a)
  椭圆:椭圆上任一点和焦点的连线段的长称为焦半径。
  |PF1|=a+ex |PF2|=a-ex
  双曲线:
  P在左支,|PF1|=-a-ex |PF2|=a-ex
  P在右支,|PF1|=a+ex |PF2|=-a+ex
  P在下支,|PF1|= -a-ey |PF2|=a-ey
  P在上支,|PF1|= a+ey |PF2|=-a+ey
  圆锥曲线的光学性质:
  1)椭圆:点光源在一个焦点上,光线通过另一个焦点。
  2)双曲线:点光源在一个焦点上,反射光线与另一焦点到反射点的连线在同一条直线上。
  3)抛物线:点光源在焦点上,反射光线相互平行且垂直于准线。具体应用:探照灯。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式