已知圆C:(x-1)^2+(y-1)^2=9,过点A(2,3)作圆C的任意弦,求这些弦的中点P的轨迹方程.
2013-09-25
展开全部
由圆的方程可知,圆的圆心为C(1,1)
设弦中点为M(x,y)
由圆的性质可知CM⊥AM
由勾股定理,得
MC^2+MA^2=AC^2
即[(x-1)^2+(y-1)^2]+[(x-2)^2+(y-3)^2]=(2-1)^2+(3-1)^2
(也就是以AC为直径的一个圆)
化简整理,得
即 所求的弦中点的轨迹方程:
(x-3/2)^2+(y-2)^2=5/4
设弦中点为M(x,y)
由圆的性质可知CM⊥AM
由勾股定理,得
MC^2+MA^2=AC^2
即[(x-1)^2+(y-1)^2]+[(x-2)^2+(y-3)^2]=(2-1)^2+(3-1)^2
(也就是以AC为直径的一个圆)
化简整理,得
即 所求的弦中点的轨迹方程:
(x-3/2)^2+(y-2)^2=5/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询