怎样解一元3次方程?十字相乘

怎样解一元3次方程?十字相乘一元3次方程可以用十字相乘来解么?要具体的过程,如下式:a^3-2a^2-a+2=0... 怎样解一元3次方程?十字相乘
一元3次方程可以用十字相乘来解么?
要具体的过程,如下式:a^3-2a^2-a+2=0
展开
夐远逍遥
2008-07-09 · TA获得超过2639个赞
知道小有建树答主
回答量:574
采纳率:0%
帮助的人:524万
展开全部
能,如下

一元三次方程的求根公式称为“卡尔丹诺公式”
一元三次方程的一般形式是
x3+sx2+tx+u=0
如果作一个横坐标平移y=x+s/3,那么我们就可以把方程的二次项消
去。所以我们只要考虑形如
x3=px+q
的三次方程。

假设方程的解x可以写成x=a-b的形式,这里a和b是待定的参数。
代入方程,我们就有
a3-3a2b+3ab2-b3=p(a-b)+q
整理得到
a3-b3 =(a-b)(p+3ab)+q
由二次方程理论可知,一定可以适当选取a和b,使得在x=a-b的同时,
3ab+p=0。这样上式就成为
a3-b3=q
两边各乘以27a3,就得到
27a6-27a3b3=27qa3
由p=-3ab可知
27a6 + p = 27qa3
这是一个关于a3的二次方程,所以可以解得a。进而可解出b和根x.
除了求根公式和因式分解外还可以用图象法解,中值定理。很多高次方程是无法求得精确解的,对于这类方程,可以使用二分法,切线法,求得任意精度的近似解。参见同济四版的高等数学。

一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax^3+bx^2+cx+d+0的标准型一元三次方程形式化为x^3+px+q=0的特殊型。
一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式。我归纳出来的形如 x^3+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和。归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A和B。方法如下:
(1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到
(2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3))
(3)由于x=A^(1/3)+B^(1/3),所以(2)可化为
x^3=(A+B)+3(AB)^(1/3)x,移项可得
(4)x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知
(5)-3(AB)^(1/3)=p,-(A+B)=q,化简得
(6)A+B=-q,AB=-(p/3)^3
(7)这样其实就将一元三次方程的求根公式化为了一元二次方程的求根公式问题,因为A和B可以看作是一元二次方程的两个根,而(6)则是关于形如ay^2+by+c=0的一元二次方程两个根的韦达定理,即
(8)y1+y2=-(b/a),y1*y2=c/a
(9)对比(6)和(8),可令A=y1,B=y2,q=b/a,-(p/3)^3=c/a
(10)由于型为ay^2+by+c=0的一元二次方程求根公式为
y1=-(b+(b^2-4ac)^(1/2))/(2a)
y2=-(b-(b^2-4ac)^(1/2))/(2a)
可化为
(11)y1=-(b/2a)-((b/2a)^2-(c/a))^(1/2)
y2=-(b/2a)+((b/2a)^2-(c/a))^(1/2)
将(9)中的A=y1,B=y2,q=b/a,-(p/3)^3=c/a代入(11)可得
(12)A=-(q/2)-((q/2)^2+(p/3)^3)^(1/2)
B=-(q/2)+((q/2)^2+(p/3)^3)^(1/2)
(13)将A,B代入x=A^(1/3)+B^(1/3)得
(14)x=(-(q/2)-((q/2)^2+(p/3)^3)^(1/2))^(1/3)+(-(q/2)+((q/2)^2+(p/3)^3)^(1/2))^(1/3)

后记:

一、(14)只是一元三方程的一个实根解,按韦达定理一元三次方程应该有三个根,不过按韦达定理一元三次方程只要求出了其中一个根,另两个根就容易求出了。由于计算太复杂及这个问题历史上已经解决,我不愿花过多的力气在上面,我做这项工作只是想考验自己的智力,所以只要关键的问题解决了另两个根我就没有花力气去求解。
二、我也曾用类似的方法去求解过一元四次方程的解,具体就是假设一元四次方程的根的形式为x=A^(1/4)+B^(1/4)+C^(1/4),有一次我好象解出过,不过后来多次求解好象说明这种方法求解一元四次方程解不出。不过我认为如果能进一步归纳出A、B、C的形式,应该能求出一元四次方程的求根公式的。由于计算实在太复杂及这个问题古人已经解决了,我后来一直没能完成这项工作。
三、通过求解一元三次方程的求根公式,我获得了一个经验,用演绎法(就是直接推理)求解不出来的问题,换一个思维,用归纳法(及通过对简单和特殊的同类问题的解法的归纳类比)常常能取得很好的效果。事实上人类常常是这样解决问题的,大科学家正是这样才成为大科学家的。

参考资料: 网上和自己

蔡邕饮闻红豆香V
2008-07-09 · TA获得超过229个赞
知道答主
回答量:36
采纳率:0%
帮助的人:0
展开全部
a^3-2a^2-a+2=0
a^2(a-2)-(a-2)=0
(a-2)(a^2-1)=0
(a-2)(a-1)(a+1)=0
所以解得a=-1 或a=2 或a=1

解这类方程首先做的是观察方程本身的特点,依照一般出题人的个性,不可能出来一个很难解的三次方程(函数的话让你定范围的除外),一般用到的技巧是拆项,补项,变号,至于具体如何操作,还是要靠平时的积累,做这种题也是需要感觉的,这种感觉来源于平时的练习。
希望能对你有所帮助。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友77e5e5896
2008-07-09 · TA获得超过2856个赞
知道小有建树答主
回答量:693
采纳率:0%
帮助的人:1167万
展开全部
基本上解出来概率忒低

一元三次方程的一般形式是 x3+sx2+tx+u=0 如果作一个横坐标平移 y=x+s/3,那么我们就可以把方程的二次项消去。所以我们只要考虑形如 x3=px+q 的三次方程。

假设方程的解x可以写成x=a-b的形式,这里a和b是待定的参数。
代入方程,我们就有a3-3a2b+3ab2-b3=p(a-b)+q ,整理得到 a3-b3 =(a-b)(p+3ab)+q 。

由二次方程理论可知,一定可以适当选取a和b,使得在x=a-b的同时,3ab+p=0。这样上式就成为 a3-b3=q 两边各乘以27a3,就得到 27a6-27a3b3=27qa3

由 p=-3ab可知 27a6 + p = 27qa3 这是一个关于a3的二次方程,所以可以解得a。进而可解出b和根x。

参考资料: 塔塔利亚发现的一元三次方程的解法(楼上方法实用,分给楼上)

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
棋道难
2008-07-09 · TA获得超过1845个赞
知道小有建树答主
回答量:929
采纳率:0%
帮助的人:0
展开全部
一般是带入具体的数,像1啊,2啊,-1啊,-2啊之类的。然后再根据已经算出来的根进行因式分解。
比如你那道题,如果你不直接进行因式分解,
你可以这样:a^3-2a^2-a+2=0。2是明显的根。那么就有(a-2)*(a的方程)=0.a的方程就用配的方法就可以了。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
217紫薇
2008-07-09 · TA获得超过1750个赞
知道小有建树答主
回答量:1564
采纳率:0%
帮助的人:0
展开全部
这个..一般是凑!要是凑不出来...就没办法了
因为这一类的题感觉上多少有一点奥数的感觉
一般都是用凑的方法

学了这么多年数学,总是觉得凑是数学的核心之一

a(a^2-1)-2(a^2-1)+2=0

我修改了自己的答案,所以成了第三...晕本来是第一的
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式