已知函数y=f(x)对任意x∈(-π/2,π/2)满足f′(x)cosx+f(x)sinx>0
则下列不等式成立的是A.√2f(-π/3)<f(π/4)B.√2f(π/3)<f(π/4)C.f(0)>2f(π/3)D.f(0)>√2f(π/4)...
则下列不等式成立的是
A.√2f(-π/3)<f(π/4) B.√2f(π/3)<f(π/4)C.f(0)>2f(π/3) D.f(0)>√2f(π/4) 展开
A.√2f(-π/3)<f(π/4) B.√2f(π/3)<f(π/4)C.f(0)>2f(π/3) D.f(0)>√2f(π/4) 展开
1个回答
展开全部
∵对任意x∈(-π/2,π/2)满足f′(x)cosx+f(x)sinx>0
∴[f(x)/cosx]'=[f′(x)cosx+f(x)sinx]/cos²x>0
∴f(x)/cosx是(-π/2,π/2)上的增函数
∴f(0)/cos0<f(π/4)/cosπ/4<f(π/3)/cosπ/3)
即f(0)< f(π/4)/(√2/2)<f(π/3)/(1/2)
∴f(0)<√2 f(π/4)<2f(π/3)
B,C,D均错
又f(-π/3)/cos(-π/3)<f(π/4)/cosπ/4
∴2f(-π/3)<√2f(π/4)
即.√2f(-π/3)<f(π/4)
选A
∴[f(x)/cosx]'=[f′(x)cosx+f(x)sinx]/cos²x>0
∴f(x)/cosx是(-π/2,π/2)上的增函数
∴f(0)/cos0<f(π/4)/cosπ/4<f(π/3)/cosπ/3)
即f(0)< f(π/4)/(√2/2)<f(π/3)/(1/2)
∴f(0)<√2 f(π/4)<2f(π/3)
B,C,D均错
又f(-π/3)/cos(-π/3)<f(π/4)/cosπ/4
∴2f(-π/3)<√2f(π/4)
即.√2f(-π/3)<f(π/4)
选A
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询