证明数列收敛性

证明这个数列的收敛性:Xn=1/2x3/4······(2n-1)/2n... 证明这个数列的收敛性:Xn=1/2x3/4······(2n-1)/2n 展开
crs0723
推荐于2016-12-01 · TA获得超过2.5万个赞
知道大有可为答主
回答量:1.6万
采纳率:85%
帮助的人:4474万
展开全部
利用“单调有界数列必收敛”的定理来证明
因为Xn=1/2*3/4*...*(2n-1)/2n<1/2*3/4*...*(2n-3)/(2n-2)=X(n-1)
所以{Xn}是单调递减数列
又因为0<Xn<X(n-1)<...<X1=1/2
所以{Xn}是有界数列
综上所述{Xn}收敛
TableDI
2024-07-18 广告
当使用VLOOKUP函数进行匹配时,如果结果返回“#N/A”错误,这通常意味着在查找表中未找到与查找值相匹配的项。可能的原因有:查找值拼写错误、查找表的范围不正确、查找值不在查找列的列、查找表未进行绝对引用导致范围变动等。为了解决这个问题,... 点击进入详情页
本回答由TableDI提供
truesjkof
2013-09-25 · TA获得超过3480个赞
知道大有可为答主
回答量:1694
采纳率:100%
帮助的人:682万
展开全部
xn=xn-1 * (2n-1)/2n<xn-1
所以xn是单调递减的,
同时xn>0,所以xn一定有极限。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
漂泊中的永恒
2013-09-25 · TA获得超过406个赞
知道小有建树答主
回答量:120
采纳率:0%
帮助的人:122万
展开全部
答案是0,采用夹逼的方法做。
xn=1/2x3/4······(2n-1)/2n
yn=2/3x4/5……2n/(2n+1)
由于xn的每一个因子数 都比yn小,所以xn<yn
而xn*yn可以抵消所有中间项,xn*xn<xn*yn=1/(2n+1)
所以0<xn<1/(2n+1)开根号。
左右极限都为0,所以xn极限也为0.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式