在△ABC的三个内角A,B,C所对的边分别是a,b,c,2bcosB=acosC+ccosA,且b²=3ac,则sinAsinC=
展开全部
利用正弦定理
a/sinA=b/sinB=c/sinC
∵ acosC+ccosA=2bcosB
∴ sinAcosC+sinCcosA=2sinBcosB
∴ sin(A+C)=2sinBcosB
∵ A+C=π-B
∴ sin(A+C)=sinB
∴ cosB=1/2
∴ B=π/3
b²=3ac
再次利用正弦定理
2sin²B=3sinAsinC
∴sinAsinC=2/3*sin²B=2/3*(√3/2)²=1/2
如果您认可我的回答,请点击“采纳为满意答案”,谢谢!
a/sinA=b/sinB=c/sinC
∵ acosC+ccosA=2bcosB
∴ sinAcosC+sinCcosA=2sinBcosB
∴ sin(A+C)=2sinBcosB
∵ A+C=π-B
∴ sin(A+C)=sinB
∴ cosB=1/2
∴ B=π/3
b²=3ac
再次利用正弦定理
2sin²B=3sinAsinC
∴sinAsinC=2/3*sin²B=2/3*(√3/2)²=1/2
如果您认可我的回答,请点击“采纳为满意答案”,谢谢!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询