求答案,详细点的,谢谢!
展开全部
(1) f'(x) = 1 - 1/(x + 1)² = x(x + 2)/(x + 1)²
0 ≤ x ≤ 1: f'(x) ≥ 0 (等号仅在x = 0时成立)
f(x)在[0, 1]内为增函数
(2)
这里的意思是,在[0, 1]内, f(x)和g(x)总有交点
g(x) = a(x - 2) + 5, 此为过A(2, 5)的直线, 斜率为a
f(0) = 1, B(0, 1)
f(1) = 3/2, C(1, 3/2)
AB的斜率为p = (5 - 1)/(2 - 0) = 2
AC的斜率为q = (5 - 3/2)/(2 - 1) = 7/2
2 ≤ a ≤ 7/2
0 ≤ x ≤ 1: f'(x) ≥ 0 (等号仅在x = 0时成立)
f(x)在[0, 1]内为增函数
(2)
这里的意思是,在[0, 1]内, f(x)和g(x)总有交点
g(x) = a(x - 2) + 5, 此为过A(2, 5)的直线, 斜率为a
f(0) = 1, B(0, 1)
f(1) = 3/2, C(1, 3/2)
AB的斜率为p = (5 - 1)/(2 - 0) = 2
AC的斜率为q = (5 - 3/2)/(2 - 1) = 7/2
2 ≤ a ≤ 7/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询