![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
用极限的定义证明lim0.99999999...=1
4个回答
展开全部
正确的写法是
lim(n→inf.)0.99…9 (小数点后n位) = 1。
证明如下:对任给的 ε>0 (ε<1),为使
|0.999…9 (小数点后 n 位) - 1| = 0.000…01(小数点后 n 位) = (1/10)^n < ε,
只需 n > -lnε/ln10,于是,取N = [-lnε/ln10]+1,则当 n>N 时,有
|0.999…9 (小数点后n位) - 1| = (1/10)^n < (1/10)^N <= (1/10)^(-lnε/ln10) = ε,
根据极限的定义,极限成立。
lim(n→inf.)0.99…9 (小数点后n位) = 1。
证明如下:对任给的 ε>0 (ε<1),为使
|0.999…9 (小数点后 n 位) - 1| = 0.000…01(小数点后 n 位) = (1/10)^n < ε,
只需 n > -lnε/ln10,于是,取N = [-lnε/ln10]+1,则当 n>N 时,有
|0.999…9 (小数点后n位) - 1| = (1/10)^n < (1/10)^N <= (1/10)^(-lnε/ln10) = ε,
根据极限的定义,极限成立。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
我来个简单的。
∵1/9=0.1111111……
∴0.99999999...=9×(1/9)=1
这根本就不用取极限,本身就等于1.
∵1/9=0.1111111……
∴0.99999999...=9×(1/9)=1
这根本就不用取极限,本身就等于1.
![](http://iknow-zhidao.bdimg.com/static/question-new/widget/value-comment/img/support_10.6efc748.gif?x-bce-process=image/format,f_auto/quality,q_80)
你对这个回答的评价是?
展开全部
你写错了,可以写0.99999...=1,或者lim(n→∞)9∑(k=1→n)0.1^k=1,但是那个lim0.999...=1就不太规范了
下面证明第二个等式
左边=lim(n→∞)9*0.1*(1-0.1^n)/(1-0.1)
=0.9*(1-0)/(1-0.1)
=1
下面证明第二个等式
左边=lim(n→∞)9*0.1*(1-0.1^n)/(1-0.1)
=0.9*(1-0)/(1-0.1)
=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询