如图,已知在△ABC中,∠B、∠C的角平分线交于点O,若∠A=60求证OE=OF
2013-09-28
展开全部
在BC上截取BD=BE,连接OD
根据角平分线的条件可得:
∠BOC=180°-(∠OBC+∠OCB)
=180°-(∠ABC+∠ACB)/2
=180°-(180°-∠A)/2
=180°-(180°-∠A)/2
=180°-(180°-60°)/2
=120°
所以∠BOE=∠COF=60°
根据SAS可知:△BOE≌△BOD
所以∠BOE=∠BOD=60°
所以∠COD=60°
根据ASA可知:△COD≌△COF
由两组全等显然可得OF=OD=OE
所以OE=OF
根据角平分线的条件可得:
∠BOC=180°-(∠OBC+∠OCB)
=180°-(∠ABC+∠ACB)/2
=180°-(180°-∠A)/2
=180°-(180°-∠A)/2
=180°-(180°-60°)/2
=120°
所以∠BOE=∠COF=60°
根据SAS可知:△BOE≌△BOD
所以∠BOE=∠BOD=60°
所以∠COD=60°
根据ASA可知:△COD≌△COF
由两组全等显然可得OF=OD=OE
所以OE=OF
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询